Relativistic Momentum

Ansatz for relativistic momentum: \(p = m(v)v \).

Two particles with equal masses \(m \) as measured when at rest are undergoing an inelastic collision as shown in the lab frame \(S \) and in the frame \(S' \) moving with velocity \(v \) to the right.

1. Relation between \(v \) and \(\bar{v} \) from \([mln58]\) and symmetry:
 \[
 \bar{v} = -\bar{v} + v \quad \Rightarrow \quad v = \frac{2\bar{v}}{1 + \bar{v}^2/c^2}.
 \]

2. Conservation of total momentum:
 \[m(v)v + m(0)0 = M(\bar{v})\bar{v}. \]

3. Lorentz invariance of momentum conservation implies \([mex221]\):
 \[M(\bar{v}) = m(v) + m(0). \]

Relativistic mass from 1.–3. \([mex222]\):
\[
 m(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}},
\]
where \(m_0 = m(0) \) is called the rest mass.

Relativistic momentum:
\[
 p = \frac{m_0v}{\sqrt{1 - v^2/c^2}}.
\]