Driven harmonic oscillator: kinetic and potential energy

Consider the driven harmonic oscillator, \(m\ddot{x} = -kx - \gamma \dot{x} + F_0 \cos \omega t \), in a steady-state motion. (a) Calculate the average kinetic energy \(\langle T(\omega) \rangle \), the average potential energy \(\langle V(\omega) \rangle \), and the average total energy \(\langle E(\omega) \rangle = \langle T(\omega) \rangle + \langle V(\omega) \rangle \). Use the parameters \(\beta = \gamma / 2m \), \(\omega_0 = \sqrt{k/m} \), \(A = F_0 / m \). (b) Each quantity assumes its maximum value at a different resonant frequency: \(\omega_T, \omega_V, \omega_E \). Determine each resonant frequency.

Solution: