Quality factor of damped harmonic oscillator

(a) Consider the driven harmonic oscillator, \(m\ddot{x} = -kx - \gamma \dot{x} + F_0 \cos \omega t \), in a steady-state motion. Use the parameters \(\beta = \gamma / 2m \), \(\omega_0 = \sqrt{k/m} \), \(A = F_0 / m \). In [mex182] we have calculated the maximum (averaged) power input, \(P_{\text{max}} = \langle P(\omega_P) \rangle \), and in [mex181] we have calculated the average energy \(\langle E(\omega) \rangle \) stored in the oscillator. Determine the quality factor of the driven oscillator defined as \(Q = \frac{2\pi \langle E(\omega) \rangle}{\langle P(\omega) \rangle \tau} \) with \(\tau = \frac{2\pi}{\omega} \). Show that to leading order in \(\beta/\omega_0 \) the quality factor is equal to the amplitude ratio at resonance and at zero frequency: \(Q = D(\omega_R)/D(0) \).

(b) Consider the harmonic oscillator, \(m\ddot{x} = -kx - \gamma \dot{x} \), with weak damping (\(\beta/\omega_0 \ll 1 \)) and no driving force. Determine the quality factor \(Q \) of the damped oscillator defined as \(2\pi \) times the ratio of the instantaneous energy stored, \(E(t) \), and the energy loss per period, \(\tau |dE/dt| \). Evaluate the result to leading order in \(\beta/\omega_0 \).

Solution: