[mex229] Growth of falling raindrop

A spherical raindrop of mass density ρ_W falling through fog of mass density ρ_F accumulates mass by absorbing all fog droplets (assumed stationary) in its way. The initial radius is r_0 and the initial velocity is zero. The acceleration due to gravity is g. Air resistance is to be neglected.

(a) Relate the radial growth \dot{r} of the raindrop to its instantaneous velocity v.
(b) Construct a differential equation (nonlinear second order ODE) for the radius r of the raindrop.
(c) Show that the acceleration \dot{v} is initially equal to g and approaches the asymptotic value $g/7$.
(d) Plot \dot{v} versus t for $0 \leq t \leq 2.5$ and $\rho_W/\rho_F = 1000$, $g = 10$, $r_0 = 0.001$ (all in SI units).

Solution: