[mex57] Loss of kinetic energy in elastic collision

Consider a particle of mass m_1 and incident velocity \vec{v}_0 undergoing an elastic collision via central force with a target of mass m_2 that is initially at rest. The particle emerges with velocity \vec{v}_1 from the collision as viewed in the laboratory frame. The figure shows this velocity in relation to the center-of-mass velocity \vec{v}_cm and the final velocity \vec{v}_1 of the particle in the center-of-mass frame. Also shown are the scattering angles θ (center-of-mass frame) and $\bar{\theta}$ (laboratory frame). Show that the ratio of the final and initial kinetic energies in the laboratory frame is

$$\frac{T_1}{T_0} = \frac{1 + 2\rho \cos \theta + \rho^2}{(1 + \rho)^2}, \quad \rho = \frac{m_1}{m_2}.$$

Solution: