Idealized Stirling cycle

Consider the four steps of the idealized Stirling cycle for the classical ideal gas \[pV = Nk_B T, \quad C_V = \alpha Nk_B, \quad \gamma = C_p / C_V = (\alpha + 1) / \alpha. \]

(a) Calculate the work performance, \(\Delta W \), the heat transfer, \(\Delta Q \), and the change in internal energy, \(\Delta U \), for each step.

1 \(\rightarrow \) 2 isothermal compression: \(T = T_L \),
2 \(\rightarrow \) 3 isochoric heating up: \(V = V_2 \),
3 \(\rightarrow \) 4 isothermal expansion: \(T = T_H \),
4 \(\rightarrow \) 1 isochoric cooling down: \(V = V_1 \).

(b) Calculate the efficiency \(\eta \) and express it as a function of \(T_H \) and \(T_L \).

Solution: