Idealized Otto cycle

Consider the four steps of the idealized Otto cycle for a classical ideal gas \(pV = nRT, \ U = C_V T \)

with \(C_V = \alpha nR \).

(a) Determine the heat transfer, \(\Delta Q \), the work performance, \(\Delta W \), and the change in internal energy, \(\Delta U \), for each of the four steps:

1 → 2 adiabatic compression of air-fuel mixture: \(S = \text{const.} \)
2 → 3 explosion of air-fuel mixture: \(V = \text{const.} \)
3 → 4 adiabatic expansion of exhaust gas: \(S = \text{const.} \)
4 → 1 isochoric release of exhaust gas: \(V = \text{const.} \)

(c) Calculate the efficiency \(\eta \) and express it as a function of the compression ratio \(K \equiv V_1/V_2 \).

Solution: