[tex9] Work extracted from finite heat reservoir in infinite environment

A (finite) heat reservoir with heat capacity \(C = \text{const} \) is initially at temperature \(T_H \) and the (infinite) environment at the lower temperature \(T_0 \). Now the reservoir is connected to the environment by a heat engine, which absorbs an infinitesimal amount of heat \(\delta Q \) per cycle, converts part of it into work \(\delta W \), and dumps the rest into the environment. During each cycle the temperature of the reservoir decreases infinitesimally: \(\delta Q = -CdT \). Determine the maximum amount of work \(\Delta W \) that can be extracted from the reservoir before its temperature has dropped to that of the environment. The fraction of the excess internal energy \(U_{ex} = C(T_H - T_0) \) that can be converted into work is characterized by the quantity \(\Delta W/U_{ex} \). Plot this quantity versus the reduced temperature \((T_H - T_0)/T_0 \) for \(T_0 < T_H < 3T_0 \). Set \(T_H/T_0 = 1 + \epsilon \) with \(\epsilon \ll 1 \) and find the dependence of \(\Delta W/U_{ex} \) on \(\epsilon \) to leading order.

Solution: