Consider a classical ideal gas \(H_N = \sum_{l=1}^{N} (\frac{p_l^2}{2m}) \) in a box of volume \(V \) in equilibrium with heat and particle reservoirs at temperature \(T \) and chemical potential \(\mu \), respectively.

(a) Show that the grand partition function is
\[
Z = \exp \left(\frac{zV}{\lambda_T^3} \right),
\]
where \(z = \exp(\mu/k_B T) \) is the fugacity, and \(\lambda_T = \sqrt{\frac{\hbar^2}{2\pi mk_B T}} \) is the thermal wavelength.

(b) Derive from \(Z \) the grand potential \(\Omega(T, V, \mu) \), the entropy \(S(T, V, \mu) \), the pressure \(p(T, V, \mu) \), and the average particle number \(\langle N \rangle = N(T, V, \mu) \).

(c) Derive from these expressions the familiar results for the internal energy \(U = \frac{3}{2} N k_B T \), and the ideal gas equation of state \(pV = N k_B T \).

Solution: