in FeCl$_2$ we have $C = 3.7 \times 10^{-4} T^{-3}$ cal/(mole deg). This first term thus exceeds the lattice component of the specific heat. It might be suggested in this connection that the spin-wave spectrum of the new phase contains spin waves of a ferromagnetic type, which give rise to a term $T^{3/2}$ in the specific heat, and (apparently) waves of an antiferromagnetic type, which, along with the lattice specific heat, contribute to the T^{3} term.

For the compounds III ($x = 0.51$) and IV ($x = 0.59$), which belong to a phase in which the spin component in the easy plane is becoming ordered, the experimental points do not conform to straight lines, so that they are not described by a dependence $C = AT^{3} + BT^{3/2}$. It should be noted that the spin-wave spectrum of compounds of this type has not been derived theoretically.

I wish to thank A. S. Borovik-Romanov for useful discussions and N. B. Brandt for interest in this study.

Translated by Dave Parsons
Edited by S. J. Amoretti

Phase diagram of spin polarized 3He–4He solutions

A. É. Meiérovich
Institute of Physical Problems, Academy of Sciences of the USSR

(Submitted 10 November 1982)
Pis'ma Zh. Eksp. Teor. Fiz. 37, No. 1, 28–30 (5 January 1983)

The properties of unusual phases of solid and liquid 3He–4He in equilibrium with spin polarized 3He and the possibility of obtaining them are discussed.

PACS numbers: 67.60.Dm, 67.80. – s

1. Spin polarized 3He is currently being actively studied experimentally and theoretically. With the help of the elegant method in Ref. 1, it was possible to obtain liquid 3He†, polarized by more than 20%.2 Such a high degree of polarization must cause the phase diagram of 3He†.3 to differ considerably [for example, change in the solubility of 3He and 4He (Ref. 3)] from unpolarized 3He.4 The purpose of this letter is to explain the effect of polarization of 3He on the phase equilibrium 3He†/3He‡ and to describe the different phases that can arise.
In accessible stationary fields $H \leq 100$ kOe, the energy βH ($\beta = 0.08$ mK/kOe is the magnetic moment of the 3He nucleus) is much lower than the characteristic energy per 3He particle in liquid 3He (above 1 K) and in the 3He–4He solution in equilibrium with it (above 0.1 K). For this reason, we shall ignore the possible presence of an external magnetic field and we shall assume that the polarization is produced, for example, by melting of the spin-polarized crystal 3He↑.

The relaxation time τ_d, over which an equilibrium distribution of particles over the spin orientation is established, is determined in 3He by the weak nuclear dipolar interaction (or collisions with walls) and exceeds tens of minutes in 3He and 3He–4He. Over a time less than τ_d the system of 3He atoms with different spin projections (+ and −) behave as two independent components with the number of particles conserved in each component. The conditions for equilibrium of pure 3He↑ and 3He↑–4He have the form $\mu_1^+ = \mu_2^+$, $\mu_1^- = \mu_2^-$ (the indices 1 and 2 correspond to the chemical potentials μ of 3He atoms in pure 3He and in the solution) with constant total number of 3He atoms in the system $N = N_1^+ + N_1^- + N_2^+ + N_2^-$ and degree of polarization $P = (N_1^+ - N_1^- - N_2^+ + N_2^-)/N$. Since the energy scales in both phases differ considerably from each other, polarization affects μ_1^\pm and μ_2^\pm differently. The conditions for equilibrium μ_1^\pm (P_1) μ_2^\pm (P_2) are satisfied with unequal degrees of polarization $P_{1,2} = (N_{1,2}^+ - N_{1,2}^-)/N_{1,2}$ of both phases, while the equilibrium concentration of 3He in the solution $N_2/N_2 + N_4$ depends on $P_{1,2}$. The effect of polarization on the phase equilibrium is easily observed quantitatively with weak polarization when the change in the energy is quadratic in P. In this case,

$$P_{1,2} = P \frac{\chi_{1,2} N}{\chi_1 N_1 + \chi_2 N_2}, \quad P_1/P_2 = \chi_1/\chi_2,$$

where $\chi_{1,2}$ is the susceptibility (per single 3He particle) in pure 3He and in solution. Since the distribution of 3He atoms between the pure phase and the solution N_1/N_2 depends on the ratio of the number of 3He N and 4He N_4 atoms in the system, it is easy to change $P_{1,2}$ by varying N/N_4. The main difficulty in solving the equations of phase equilibrium in a strongly polarized system has to do with the absence of information on the function μ_1^\pm (P_1) for liquid 3He; for rarified phases 3He μ_1 (P) is known for any polarization.

2. Since at low temperatures T the susceptibility of solid 3He is much higher than in the liquid phase, the 3He crystal melts at a pressure several atmospheres lower than in the absence of polarization. It turns out that for the phase diagram of solutions it is fundamentally significant that the pressure of crystallization of pure 3He is higher or lower than for the 4He crystal. In both cases unusual phases of the solution arise. In the first case, the crystal 3He↑ and the liquid solution 3He–4He would be in equilibrium (in the unpolarized system solid 3He cannot be in equilibrium with the solution 3He–4He) and, in addition, with total polarization of 3He the concentration of the solution is approximately two times lower than the limiting concentration of 3He in the unpolarized solution at high pressures. With partial polarization of 3He the polarization of the crystal 3He↑ will be much greater than for 3He–4He ($\chi_1/\chi_2 \sim 100$).

However, the second possibility is of much greater interest and is also more probable. In the absence of polarization the crystal 3He–4He separates completely into
the pure components at $T_c \sim 0.1$ K.\cite{4} Polarization of liquid ^3He leads to a very significant (compared to T_c) increase in μ_+^\pm. This means that when some critical value of the degree of polarization is attained (threshold value $\delta\mu_+^\pm \sim 0.1$ K) on the liquid $^3\text{He}^-\text{He}$ crystal equilibrium curve, separation into pure phases disappears and it is possible for the solid solution $^3\text{He}^-\text{He}$ to exist with finite concentration of ^3He for arbitrarily low temperatures. The simplest estimate of the threshold value of polarization obtained by extrapolating data on the susceptibility of liquid ^3He in weak fields gives the value $P_c \sim 0.2$–0.3. In this case, the impurity component in the crystal $P - P_c, N/N_4$ is completely polarized, while the concentration of ^3He in solid ^4He is determined by the values of $^3\text{He}^-$ and by the interaction of impurity ^3He atoms with each other. The observation of finite solubility of $^3\text{He}^-$ in solid ^4He permits studying for the first time impurity quasiparticles in quantum crystals under conditions when the temperature is comparable to the width of the band of impurity quasiparticles Δ_i (for ^3He quasiparticles in solid ^4He $\Delta_i \sim 10^{-3}$–10^{-4} K) and makes it possible to study ordering in the impurity system.

3. At still lower pressures, liquid $^3\text{He}^-$ will be in equilibrium with the liquid solution $^3\text{He}^-\text{He}$. The dependence $\mu_2(P_2)$ right up to limiting concentrations of the solution is well described by the expansion\cite{5}

$$
\mu_2^\pm(P_2) = - \Delta + \left(\frac{6\pi^2 h^3}{2M} N_2 \right)^{2/3} (1 \pm P_2)^{2/3} + \frac{4\pi a h^3}{2V_2} \frac{N_2}{2V_2} (1 \pm P_2) + \ldots
$$

The values of the parameters appearing in this expression (V_2 is the volume of the solution, Δ is the binding energy, M is the effective mass, and a is the s-scattering length) are such that for the ratio of the degrees of polarization we obtain the estimate $P_2/P_1 \sim 3$. The appearance of enhanced polarization accompanying dissolution could be very important for experiments: It is already possible to obtain, using present capabilities for polarizing ^3He (Ref. 2) in equilibrium with ^3He, a nearly completely polarized solution, which makes it possible to check the theory experimentally.\cite{5} The polarization of ^3He also changes the limiting solubility of ^3He in ^4He, in equilibrium with ^3He. An estimate of the limiting concentration of the completely polarized solution based on the concentration expansion for μ_2 gives $c/c_0 \sim 3$–4, where c_0 is the limiting concentration in the absence of polarization. As a result, it is possible for a highly concentrated $^3\text{He}^-\text{He}$ solution which is a Fermi liquid with properties fundamentally different from pure ^3He as well as from $^3\text{He}^-\text{He}$ solutions, to exist.\cite{5} The temperature of the transition of ^3He in such a concentrated solution to the superfluid state in the case of p-pairing (in the polarized solution s-pairing is impossible) must exceed 10^{-5} K.

\begin{itemize}
\end{itemize}

Translated by M. E. Alferieff
Edited by S. J. Amorety