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A few years after the formulation of quantum mechan-
ics, Heisenberg and Dirac1 discovered that one of its won-
drous consequences was the key to the age-old mystery of
ferromagnetism. They found that the laws of quantum
mechanics imply the existence of an effective interaction,
Jij Si · Sj , between electron spins on neighboring atoms
with overlapping orbital wave functions. The exchange
interaction, as it has become known, is caused by the
combined effect of the Coulomb repulsion and the Pauli
exclusion principle. This spin interaction was soon recog-
nized to be the key to a microscopic theory of ferromag-
netism and many other cooperative phenomena involving
electron spins.

In 1931 Hans Bethe2 presented a method for obtain-
ing the exact eigenvalues and eigenvectors of the one-
dimensional (1D) spin-1/2 Heisenberg model, a linear
array of electrons with uniform exchange interaction be-
tween nearest neighbors. Bethe’s parametrization of the
eigenvectors, the Bethe ansatz, has become influential to
an extent not imagined at the time. Today, many other
quantum many body systems are known to be solvable
by some variant of the Bethe ansatz, and the method
has been generalized and expanded far beyond the ad
hoc calculational tool it was originally. Unlike the sim-
ulation of a classical model system, most computational
approaches to quantum many-body systems require a fair
amount of analytical work up front. This requirement is
true for Monte Carlo calculations, renormalization group
approaches, the recursion method, large-scale numerical
diagonalizations, and for the Bethe ansatz when used in
a computational context.

In spite of its proven importance and wide range of
applications, the Bethe ansatz is rarely discussed in text-
books on quantum mechanics and statistical mechanics
except at the advanced level. The goal of this column is
to introduce the Bethe ansatz at an elementary level. In
future columns we plan to discuss some of the extensions,
generalizations, and applications of the method, to which
many workers have made important contributions. Our
emphasis will be on computational applications for which
the method is less well known than for its usefulness as
an analytical tool.

The Bethe ansatz is an exact method for the calcu-
lation of eigenvalues and eigenvectors of a limited but
select class of quantum many-body model systems. Al-
though the eigenvalues and eigenvectors for a finite sys-
tem may be obtained with less effort from a brute force
numerical diagonalization, the Bethe ansatz offers two
important advantages: (i) all eigenstates are character-

ized by a set of quantum numbers which can be used to
distinguish them according to specific physical proper-
ties; (ii) in many cases the eigenvalues and the physical
properties derived from them can be evaluated in the
thermodynamic limit.

The Hamiltonian of the Heisenberg model of spins
Sn = (Sx

n, S
y
n, S

z
n) with quantum number s = 1/2 on a

1D lattice of N sites with periodic boundary conditions
SN+1 = S1 is given by

H = −J
N

∑

n=1

Sn · Sn+1

= −J
N

∑

n=1

[

1

2

(

S+
n S

−
n+1 + S−

n S
+
n+1

)

+ Sz
nS

z
n+1

]

, (1)

where S±
n ≡ Sx

n ± iSy
n are spin flip operators. H acts on

a Hilbert space of dimension 2N spanned by the orthog-
onal basis vectors |σ1 . . . σN 〉, where σn =↑ represents
an up spin and σn =↓ a down spin at site n. The spin
commutation relations (with ~ = 1) are

[Sz
n, S

±
n′ ] = ±S±

n δnn′ , [S+
n , S

−
n′ ] = 2Sz

nδnn′ . (2)

The application of the operators S±
n , S

z
n on a vector

|σ1 . . . σN 〉 yields the results summarized in Table I. We
can use these rules to express H as a real and symmetric
2N × 2N matrix whose eigenvectors can be computed by
standard diagonalization algorithms3. From the eigen-
vectors, the physical quantities of interest can be calcu-
lated by evaluating the expectation values (matrix ele-
ments) for the corresponding operators.

TABLE I. Rules governing the application of the spin op-
erators on the basis vectors |σ1 . . . σN 〉 with σn =↑, ↓.

| . . . ↑ . . . 〉 | . . . ↓ . . . 〉

S+

k
0 | . . . ↑ . . . 〉

S−
k

| . . . ↓ . . . 〉 0
Sz

k

1

2
| . . . ↑ . . . 〉 − 1

2
| . . . ↓ . . . 〉

The Hamiltonian matrix can be written in block di-
agonal form if we perform, prior to the numerical di-
agonalization, one or several basis transformations from
{|σ1 . . . σN 〉} to a symmetry-adapted basis. These trans-
formations reduce the computational effort needed for
the remaining numerical diagonalization and make it pos-
sible to handle larger system sizes.

The Bethe ansatz is a basis transformation that does
not have to be supplemented by a numerical diagonaliza-
tion. In principle and usually in practice, this alternative
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procedure removes the cap on system sizes. However, the
implementation of the Bethe ansatz entails calculational
challenges of its own. Depending on the specifics of the
application, they can be met by analytical or computa-
tional methods as we shall see in the following.

For the Heisenberg model, two symmetries are essential
for the application of the Bethe ansatz. The rotational
symmetry about the z-axis in spin space, which we have
chosen to be the quantization axis, implies that the z-

component of the total spin Sz
T ≡

∑N

n=1 S
z
n is conserved:

[H,Sz
T ] = 0. According to the rules of Table I, the oper-

ation of H on |σ1 . . . σN 〉 yields a linear combination of
basis vectors, each of which has the same number of down
spins. Hence, sorting the basis vectors according to the
quantum number Sz

T = N/2 − r, where r is the number
of down spins, is all that is required to block diagonalize
the Hamiltonian matrix.

The block with r = 0 (all spins up) consists of a single
vector |F 〉 ≡ | ↑ . . . ↑〉. It is an eigenstate, H |F 〉 =
E0|F 〉, with energy E0 = −JN/4. The N basis vectors
in the invariant subspace with r = 1 (one down spin) are
labeled by the position of the flipped spin:

|n〉 = S−
n |F 〉 n = 1, . . . , N. (3)

To diagonalize the r = 1 block of H , which has size
N×N , we take into account the translational symmetry,
i.e., the invariance of H with respect to discrete transla-
tions by any number of lattice spacings. Translationally
invariant basis vectors can be constructed from the vec-
tors in (3) by writing

|ψ〉 =
1√
N

N
∑

n=1

eikn|n〉 (4)

for wave numbers k = 2πm/N, m = 0, . . . , N − 1. (The
lattice spacing has been set equal to unity.) The vec-
tors |ψ〉 are eigenvectors of the translation operator with
eigenvalues eik and are also eigenvectors of H with eigen-
values

E − E0 = J(1 − cos k), (5)

as can be verified by inspection (see Problem 1). The vec-
tors (4) represent magnon excitations, in which the com-
plete spin alignment of the ferromagnetic ground state
|F 〉 is periodically disturbed by a spin wave with wave-
length λ = 2π/k (see Problem 2).

In the invariant subspaces with 2 ≤ r ≤ N/2, the
translationally invariant basis does not completely diag-
onalize the Hamiltonian matrix even if we take into ac-
count further symmetries of (1) such as the full rotational
symmetry in spin space or the reflection symmetry on the
lattice. Here the Bethe ansatz is a powerful alternative.

For r = 1, the case we have already solved, we now
proceed somewhat differently. Any eigenvector in the

r = 1 subspace is a superposition of the basis vectors
(3):

|ψ〉 =

N
∑

n=1

a(n)|n〉. (6)

The eigenvector |ψ〉 is a solution of the eigenvalue equa-
tionH |ψ〉 = E|ψ〉 if the coefficients a(n) satisfy the linear
equations

2[E − E0]a(n) = J [2a(n) − a(n− 1) − a(n+ 1)] (7)

for n = 1, 2, . . . , N and with periodic boundary condi-
tions a(n+N) = a(n). N linearly independent solutions
of (7) are

a(n) = eikn, k =
2π

N
m, m = 0, 1, . . . , N − 1.

(8)

If we substitute the coefficients a(n) into (6), we obtain
(after normalization) the magnon states (4) with energies
(5).

The distinctive features of the Bethe ansatz begin to
emerge when we apply the same procedure to the case
r = 2. The task is to determine the coefficients a(n1, n2)
for all eigenstates

|ψ〉 =
∑

1≤n1<n2≤N

a(n1, n2)|n1, n2〉, (9)

where |n1, n2〉 ≡ S−
n1
S−

n2
|F 〉 are the basis vectors in this

subspace of dimension N(N − 1)/2. Bethe’s preliminary
ansatz for the coefficients is

a(n1, n2) = Aei(k1n1+k2n2) +A′ei(k1n2+k2n1). (10)

We might wish to set A = A′, use the same values for
k1, k2 as in (8), and interpret the wave function as a
superposition of two magnons. However, the result would
be an overcomplete set of N(N+1)/2 nonorthogonal and
nonstationary states. Superimposed spin waves are in
conflict with the requirement that the two flipped spins
must be at different sites. The eigenvalue equation for
(9) translates into N(N − 1)/2 equations for as many
coefficients a(n1, n2):

2[E − E0]a(n1, n2) = J [4a(n1, n2)−a(n1−1, n2)

−a(n1+1, n2) − a(n1, n2−1)− a(n1, n2+1)]

for n2 > n1+1, (11a)

2[E − E0]a(n1, n2) = J [2a(n1, n2) − a(n1−1, n2)

−a(n1, n2+1)]

for n2 = n1+1. (11b)

Equations (11a) are satisfied by a(n1, n2) in (10) with
arbitrary A,A′, k1, k2 for n2 > n1 +1 and for n2 = n1 +1
provided the energy depends on k1, k2 as follows:

E − E0 = J
∑

j=1,2

(1 − cos kj). (12)
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Equations (11b), which are not automatically satisfied by
the ansatz (10), are then equivalent to the N conditions

2a(n1, n1 + 1) = a(n1, n1) + a(n1 + 1, n1 + 1) (13)

obtained by subtracting (11b) from (11a) for n2 = n1+1.
In other words, a(n1, n2) are solutions of Eqs. (11) if they
have the form (10) and satisfy (13). The conditions (13)
require a modification of the amplitude ratio,

A

A′
≡ eiθ = −e

i(k1+k2) + 1 − 2eik1

ei(k1+k2) + 1 − 2eik2

. (14)

This requirement is incorporated into the Bethe ansatz
as extra phase factors

a(n1, n2) = ei(k1n1+k2n2+ 1

2
θ12) + ei(k1n2+k2n1+ 1

2
θ21), (15)

where the phase angle θ12 = −θ21 ≡ θ depends on the as
yet undetermined k1, k2 via (14) or, in real form, via

2 cot
θ

2
= cot

k1

2
− cot

k2

2
. (16)

The quantities k1, k2 will henceforth be referred to as
momenta of the Bethe ansatz wave function (9) with co-
efficients (15).

Two additional relations between k1, k2, and θ fol-
low from the requirement that the wave function (9) be
translationally invariant, which implies that a(n1, n2) =
a(n2, n1 + N). This condition is satisfied by the coeffi-
cients (15) if eik1N = eiθ, eik2N = e−iθ. Equivalently, we
can write (after taking logarithms)

Nk1 = 2πλ1 + θ, Nk2 = 2πλ2 − θ, (17)

where the integers λi ∈ {0, 1, . . . , N−1} are called Bethe
quantum numbers.

The remaining task is to find all (λ1, λ2) pairs which
yield solutions of Eqs. (16) and (17), known as the Bethe
ansatz equations. Every eigenstate in the r = 2 subspace
can be found in this way. For any solution k1, k2, θ, the
(non-normalized) eigenvector has coefficients of the form
(15). The expression (12) for the energy and the relation

k = k1 + k2 =
2π

N
(λ1 + λ2) (18)

for the wave number k are reminiscent of two superim-
posed magnons. The magnon interaction is reflected in
the phase shift θ and in the deviation of the momenta
k1, k2 from the values of the one-magnon wave numbers
as given in (8). We shall see that the magnons either scat-
ter off each other or form bound states. Note that the
momenta k1, k2 specify the Bethe ansatz wave function
(9), while the wave number k is the quantum number as-
sociated with the translational symmetry of H and exists
independently of the Bethe ansatz.

The analysis of the complete r = 2 spectrum will
demonstrate the usefulness of the Bethe quantum num-
bers for distinguishing eigenstates with different physical

properties. The allowed (λ1, λ2) pairs are restricted to
0 ≤ λ1 ≤ λ2 ≤ N − 1. Switching λ1 and λ2 simply
interchanges k1 and k2 and produces the same solution.
There are N(N + 1)/2 pairs that meet this restriction,
but only N(N−1)/2 of them yield a solution of Eqs. (16)
and (17). The solutions can be determined analytically
or computationally. Some of them have real k1, k2, and
others yield complex conjugate momenta, k2 = k∗1 .

We first find all the solutions and then interpret them.
The (λ1, λ2) pairs which yield solutions for N = 32 are
shown in Fig. 1. We begin with the class C1 of states

�1 + �2 = N=2 �1 + �2 = N �1 + �2 = 3N=2

�2 -0 N � 10
�1
6

@@@@@@@@@@@@@
@@@@@@@@@I @@@@@@@@@@@@@

@@@@@@@@@@@@@
@@@@@@@I @@@@@@@@@@@@@

@@@@@@@I

FIG. 1. The allowed pairs of Bethe quantum numbers
(λ1, λ2) that characterize the N(N − 1)/2 eigenstates in the
r = 2 subspace for N = 32. The states of class C1, C2, and
C3 are colored red, white, and blue, respectively.

for which one of the Bethe quantum numbers is zero,
λ1 = 0, λ2 = 0, 1, . . . , N − 1. There exists a real solution
for all N combinations, k1 = 0, k2 = 2πλ2/N, θ = 0 (see
Problem 3).

Next consider the class C2 of states with nonzero λ1, λ2

which differ by two or more: λ2 − λ1 ≥ 2. There are
N(N − 5)/2 + 3 such pairs. All of them yield a solu-
tion with real k1, k2. To determine these solutions, we
combine Eqs. (16), (17), and (18) into a single nonlinear
equation for k1:

2 cot
Nk1

2
= cot

k1

2
− cot

k − k1

2
. (19)

The solution k1 of (19) for a given wave number k =
(2πn/N), n = 0, 1, . . . , N − 1 is substituted into (17)
and yields k2 and θ. Some of the solutions can be found
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analytically (Problem 4), and others must be determined
numerically (Problem 5).

The remaining class C3 of states has nonzero Bethe
quantum numbers λ1, λ2 which either are equal or differ
by unity. There exist 2N − 3 such pairs, but we will
see that only N−3 pairs yield solutions of (16) and (17).
Most of the class C3 solutions are complex. To find them,
we write

k1 ≡ k

2
+ iv, k2 ≡ k

2
− iv, θ ≡ φ+ iχ, (20)

and use Eqs. (16) and (17) for fixed k to obtain the rela-
tion

cos
k

2
sinh(Nv) = sinh[(N − 1)v] + cosφ sinh v, (21)

where φ = π(λ1 − λ2), and χ = Nv is inferred from the
solution. It is sufficient to consider v > 0. The energy
(12) of any complex solution is rewritten in the form

E − E0 = 2J

(

1 − cos
k

2
cosh v

)

. (22)

Inspection of (21) shows (see Problem 6) that a complex
solution exists for λ2 = λ1 if

λ1+λ2 = 2, 4, . . . ,
N

2
−2,

3N

2
+2, . . . , 2N−2. (23)

For λ2 = λ1 + 1 a complex solution exists if

λ1+λ2 = λ̃, λ̃+2, . . . , N/2−1, 3N/2+3, . . . , 2N − λ̃+2,
(24)

where λ̃ ≈
√
N/π. In the latter case, there exist addi-

tional real solutions of (19) if

λ1 + λ2 = 3, 5, . . . , λ̃− 2, 2N − λ̃+ 2, . . . , 2N − 3.
(25)

The (λ1, λ2) pairs in (23)–(25) account for N−4 solutions
in class C3. There is one more class C3 solution. This
state, which has k = π and λ1 = λ2 = N/4, is easily
missed in the numerical analysis, because k1, k2 have an
infinite imaginary part (see Problem 7).

The complete r = 2 excitation spectrum (E − E0)/J
versus k for a system with N = 32 spins as obtained by
the analytical and computational procedures outlined in
Problems 3–7 is plotted in Fig. 2. The N states of class
C1 form a branch with exactly the same dispersion rela-
tion (5) as the magnon states that populate the r = 1
subspace. This degeneracy is a consequence of the con-
servation of the total spin ST (see Problem 8). The class
C2 states are spread in a regular pattern over a region in
(k,E)-space. They are nearly free superpositions of two
one-magnon states.

The excitations belonging to classes C1 and C2 can
be characterized as two-magnon scattering states. The

0 1 2 3

k

0

1

2

3

4

(E
 -

 E
0)

/J

C1

C2

C3 , λ1=λ2

C3 , λ1=λ2-1

FIG. 2. Excitation energy (E−E0)/J versus wave number
k of all N(N −1)/2 eigenstates in the invariant subspace with
r = 2 overturned spins for a system with N = 32. States of
class C1 are denoted by red circles, states of class C2 by open
black circles, and states of class C3 by blue squares if λ2 = λ1,
or blue diamonds if λ2 = λ1 + 1.

effect of the magnon interaction on these states is visu-
alized in Fig. 3. It shows all N(N − 1)/2 − N + 3 class
C1 and class C2 states for N = 32 in comparison with
the N(N + 1)/2 two-magnon superpositions, where the
momenta kj , j = 1, 2 in (12) are replaced by one-magnon
wave numbers kj = 2πmj/N, mj = 0, 1, . . . , N − 1. The
magnon interaction manifests itself as a modified excita-
tion energy of the two-magnon scattering states. Note
that the interaction energy approaches zero when either
k1 or k2 goes to zero. The class C1 states can then be
interpreted as exact superpositions of a k1 = 0 magnon
and a k2 6= 0 magnon.

As N increases, the energy correction due to the
magnon interaction diminishes for the class C2 states as
well and vanishes in the limit N → ∞. The two-magnon
scattering states then form a continuum with boundaries
E − E0 = 2J(1 ± cos k/2), which coincide with those of
the continuum of free two-magnon states.

For the class C3 states, the effects of the magnon inter-
action are much more prominent, and they do not disap-
pear in the limit N → ∞. In the (k,E)-plane of Fig. 2,
these states lie on a single branch with dispersion (see
Problem 9)

E − E0 =
J

2
(1 − cos k) (26)

below the continuum of two-magnon scattering states.
They are the two-magnon bound states.

The bound state character of the class C3 states man-
ifests itself in the enhanced probability that the two
flipped spins are on neighboring sites of the lattice.
This property of the wave function is best captured in
the weight distribution |a(n1, n2)| of basis vectors with
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0 1 2 3

k

0

1

2

3

4

(E
 -

 E
0)

/J

C1

C2

free magnons

FIG. 3. Excitation energy (E−E0)/J versus wave number
k of all two-magnon scattering states (classes C1 and C2 from
Fig. 2) for a system with N = 32 in comparison with the
noninteracting magnon pairs (+).

flipped spins at sites n1 and n2. In Fig. 4 we plot
|a(n1, n2)| versus n2−n1 for a sequence of class C3 states
between k = 0 and k = π. The distribution is peaked at
n2 − n1 = 1. Its width is controlled by the imaginary
parts of k1, k2, θ in the coefficients (15). The smallest
width is observed in the bound state at k = π, that is,
for λ1 = λ2 = N/4, whose k1, k2 have an infinite imag-
inary part (see Problem 7). In this case, all coefficients
in (9) with n2 6= n1 + 1 are zero, which implies that the
two down spins are tightly bound together and have the
largest binding energy. For the adjacent bound state with
quantum numbers λ1 = λ2 = N/4 − 1, the exponential
dependence of the weight |a(n1, n2)| on the separation
n2 − n1 can be worked out analytically (see Problem 9).

The width of the distribution |a(n1, n2)| increases as k
decreases, and the binding of the two down spins loosens.
For finite N , the exponential factors disappear when the
distribution has acquired a certain width, and the Bethe
ansatz solutions switch from complex to real. In con-
trast, the distribution |a(n1, n2)| for scattering states is
always broad and oscillates wildly in general. However,
for some combinations of k1, k2, a smooth distribution en-
sues, which has its maximum when the two down spins
are farthest apart (n2 = n1 +N/2) (see Problem 10).

The formation of bound states and scattering states of
specific elementary excitations exist in a large variety of
physical contexts. But only in rare cases such as this one
can the nature and the properties of such compound ex-
citations be investigated (analytically and computation-
ally) on the level of detail made possible by the Bethe
ansatz.

We now present the Bethe ansatz for an unrestricted
number r of overturned spins. We generalize (9) and

-0.25
0

0.25(n
2-n

1)/N 0

1

2

3

k
0

0.1

0.2

|a
(n

1,
n 2

)|

FIG. 4. Weight distribution |a(n1, n2)| versus distance
n2 − n1 of the two down spins of class C3 states at
k = (2π/N)n, n = 4, 8, . . . , N/2 for N = 128.

expand the eigenstates in the form

|ψ〉 =
∑

1≤n1<...<nr≤N

a(n1, . . . , nr)|n1, . . . , nr〉. (27)

The subspace has dimension N !/[(N − r)!r!]. The gener-
alization of (15) for the coefficients in terms of r momenta
kj , and one phase angle θij = −θji for each (k1, k2) pair
is as follows:

a(n1, . . . , nr) =
∑

P∈Sr

exp



i

r
∑

j=1

kPjnj +
i

2

∑

i<j

θPiPj



 .

(28)

The sum P ∈ Sr is over all r! permutations of the labels
{1, 2, . . . , r}. For r = 2 the two permutations are the
identity (1, 2) and the transposition (2, 1), which produce
the two terms of (15). The consistency equations for
the coefficients a(n1, . . . , nr) inferred from the eigenvalue
equation H |ψ〉 = E|ψ〉 are

2[E − E0]a(n1, . . . , nr) = J

r
∑

i=1

∑

σ=±1

[a(n1, . . . , nr)

−a(n1, . . . , ni + σ, . . . , nr)], (29a)

for nj+1 > nj + 1, j = 1, . . . , r, and

2[E − E0]a(n1, . . . , nr) =

J

r
∑

i6=jα,jα+1

∑

σ=±1

[a(n1, . . . , nr)−a(n1, . . . , ni+σ, . . . , nr)]

+J
∑

α

[2a(n1, . . . , nr)−a(n1, . . . , njα
−1, njα+1, . . . , nr)

−a(n1, . . . , njα
, njα+1 + 1, . . . , nr)] (29b)
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for njα+1 = njα
+ 1, nj+1 > nj + 1, j 6= jα. The coeffi-

cients a(n1, . . . , nr) are solutions of (29) for the energy

E − E0 = J

r
∑

j=1

(1 − cos kj) (30)

if they have the form (28) and satisfy the conditions

2a(n1, . . ., njα
, njα

+1, . . ., nr) =

a(n1, . . ., njα
, njα

, . . ., nr)+a(n1, . . ., njα
+1, njα

+1, . . ., nr)

(31)

for α = 1, . . . , r just as we have shown for r = 2. These
conditions relate every phase angle θij to the (as yet un-
determined) kj in (27):

eiθij = − e
i(ki+kj) + 1 − 2eiki

ei(ki+kj) + 1 − 2eikj
. (32)

An equivalent relation in real form reads

2 cot
θij

2
= cot

ki

2
− cot

kj

2
, i, j = 1, . . . , r. (33)

The translational invariance of (27) implies that the
coefficients (28) satisfy the relation a(n1, . . . , nr) =
a(n2, . . . , nr, n1 +N). Consequently, we must have

r
∑

j=1

kPjnj +
1

2

∑

i<j

θPi,Pj =
1

2

∑

i<j

θP′i,P′j − 2πλP′r

+

r
∑

j=2

kP′(j−1)nj + kP′r(n1 +N), (34)

where the relation between the permutations on the left
and the right is P ′(i− 1) = Pi, i = 2, . . . , r; P ′r = P1.
If we take into account that all terms not involving the
index P ′r = P1 cancel, we are left with r additional
relations between the phase angles and the momenta:

Nki = 2πλi +
∑

j 6=i

θij , i = 1, . . . , r, (35)

where λi ∈ {0, 1, . . . , N−1} as in (17). What remains to
be done is to find those sets of Bethe quantum numbers
(λ1, . . . , λr) which yield (real or complex) solutions of
the Bethe ansatz equations (33) and (35). Every solution
represents an eigenvector (27) with energy (30) and wave
number

k =
2π

N

r
∑

i=1

λi. (36)

The complete set of Bethe ansatz solutions for systems
with N = 4, 5, and 6 spins can be read off Tables II,
III, and IV, respectively. The solutions are for the in-
variant subspace with r = N/2 (Sz

T = 0) for even N or
r = (N−1)/2 (Sz

T = 1/2) for odd N . For given momenta

TABLE II. Bethe ansatz solutions for N = 4, r = 2.

ST λ1λ2 2k/π k1 k2 E − E0

2 0 0 0 0 0 0

1 0 1 1 0 π/2 1
1 0 2 2 0 π 2
1 0 3 3 0 3π/2 1

0 1 3 0 2π/3 4π/3 3
0 1 1 2 π/2 + i∞ π/2 − i∞ 1

TABLE III. Bethe ansatz solutions for N = 5, r = 2.

ST λ1λ2 5k/2π k1 k2 E − E0

5/2 0 0 0 0 0 0

3/2 0 1 1 0 2π/5 0.690983
3/2 0 2 2 0 4π/5 1.809016
3/2 0 3 3 0 6π/5 1.809016
3/2 0 4 4 0 8π/5 0.690983

1/2 1 3 4 1.705325 3.321222 3.118033
1/2 1 4 0 π/2 3π/2 2
1/2 2 4 1 2.961962 4.577859 3.118033
1/2 1 1 2 2π/5 + i1.198913 2π/5 − i1.198913 0.881966
1/2 4 4 3 8π/5 + i1.198913 8π/5 − i1.198913 0.881966

ki, the phase angles θij can be determined from (32) and
the eigenvectors (27) by the substitution of ki, θij into
(28). These solutions yield all the energy levels. Some of
the levels are degenerate, namely those with one or sev-
eral Bethe quantum numbers equal to zero. The remain-
ing eigenvectors of any such level belong to the same ST

multiplet but have different r, i.e., different Sz
T . All Bethe

ansatz solutions for r < N/2 (even N) or r < (N − 1)/2
(odd N) can be inferred from the ones listed in Tables II,
III, IV by removing the momenta ki = 0 one at a time.
Each ki = 0 removed from a solution in the r subspace
yields a solution in the r+1 subspace with the remaining
ki unchanged.

For large N , the classification of the Bethe ansatz solu-
tions becomes more and more intricate as r increases to-
ward N/2, and finding them all becomes increasingly te-
dious. A more modest, but nevertheless highly promising
and useful goal in many applications, is to find selected
solutions for very large systems (N → ∞) – solutions that
determine specific physical properties (ground state en-
ergies, magnetization curves, susceptibilities, excitation
spectra) of the underlying model system. This approach,
to which many authors have made important contribu-
tions since 1931, will be explored in future columns.

We conclude with a brief discussion of some Bethe
ansatz solutions for r > 2 that are of particular im-
portance in the context of the Heisenberg ferromagnet
(J > 0). Earlier we have found that two magnons may
form a bound state with a considerable binding energy
(see Fig. 2). We have seen that in these states the
two down spins are much more likely to be on nearest-
neighbor sites than is the case for two-magnon scattering
states. The fact is that three or more magnons can form
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TABLE IV. Bethe ansatz solutions for N = 6, r = 3.

ST λ1λ2λ3 3k/π k1 k2 k3 E − E0

3 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 π/3 1/2
2 0 0 2 2 0 0 2π/3 3/2
2 0 0 3 3 0 0 π 2
2 0 0 4 4 0 0 4π/3 3/2
2 0 0 5 5 0 0 5π/3 1/2

1 0 1 3 4 0 1.419506 2.769283 2.780775
1 0 1 4 5 0 1.340040 3.895947 5/2
1 0 1 5 0 0 2π/5 8π/5 1.381966
1 0 2 4 0 0 4π/5 6π/5 3.618033
1 0 2 5 1 0 2.387237 4.943144 5/2
1 0 3 5 2 0 3.513901 4.863679 2.780775
1 0 1 1 2 0 π/3 + i0.732857 π/3 − i0.732857 0.719223
1 0 5 5 4 0 5π/3 + i0.732857 5π/3 − i0.732857 0.719223
1 0 1 2 3 0 π/2 + i∞ π/2 − i∞ 1

0 0 0 3 3 i1.087070 −i1.087070 π 0.697224
0 1 1 4 0 π/2 + i∞ π/2 − i∞ π 3
0 1 1 5 1 1.338006 + i1.471688 1.338006 − i1.471688 4.654369 2
0 1 5 5 5 1.628815 4.945179 + i1.471688 4.945179 − i1.471688 2
0 1 3 5 3 1.722768 π 4.560416 4.302775

bound spin complexes with even lower excitation ener-
gies. Specifically, for the subspace with r down spins,
it can be shown that the lowest excited state at fixed
wave number k is represented by the wave function with
(complex) momenta given by

cot
kj

2
= r cot

k

2
− i(r − 2j + 1) +O

(

e−δjN
)

, (37)

with δj > 0, j = 1, . . . , r. This solution generalizes
the case r = 2 discussed in Problem 9 and yields exact
solutions for N → ∞. The dispersion of the resulting
bound state branch with r ≤ N/2 is

E − E0 =
J

r
(1 − cos k). (38)

The Bethe quantum numbers of any such state are char-
acterized by |λi − λi+1| = 0, 1 for every pair of complex
conjugate momenta ki+1 = k∗i in (37).

In part II of this series, the focus will be on the 1D
s = 1/2 Heisenberg antiferromagnet. We shall employ
the Bethe ansatz to determine the ground state of this
model, the spectrum of low lying excitations, and the
calculation of transition rates for dynamical quantities.

Suggested problems for further study

1. The translation operator T shifts the local spin con-
figuration to the left by one site with a wrap around
at the ends, e.g., T|↑↑↓↓〉 = |↑↓↓↑〉. Show that the
states (4) are eigenvectors of T with eigenvalues eik

and eigenvectors of H with eigenvalues (5).

2. Each spin wave state contains one flipped spin. In a
traveling wave it is located at each lattice site with
equal probability. Show that the periodic nature
of the disturbance in the spin alignment of a spin
wave state is reflected in a 1/N -correction of the
spin correlation function:

〈ψ|Sl · Sl+n|ψ〉 =
1

4
− 2

N
sin2

(

kn

2

)

. (39)

The nearest-neighbor correlation function defines
an effective angle θ between nearest-neighbor spins:
〈ψ|Sl · Sl+1|ψ〉 = 1

4 cos θ. From (39) with n = 1
we see that the smaller the wavelength, the larger
θ and the larger the energy (5) of the state. For
k = 0 the spins remain fully aligned, and the state
is degenerate with |F 〉.

3. Show that the Bethe ansatz equations for λ1 =
0, λ2 = 0, 1, . . . , N − 1 are solved by k1 = 0, k2 =
2πλ2/N, θ = 0. Use (14) instead of (16), which is
singular in this case.

4. Express (19) for k = 0 in the form cot(Nk1/2) =
cot(k1/2), which yields k1 = −k2 = 2lπ/(N − 1)
with integer l. For k = π, express (19) in the form
cot(Nk1/2) = cot(k1), which yields k1 = π − k2 =
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2lπ/(N−2). For any such solution k1, k2 found, use
(12) to determine the excitation energy and (16)
and (17) to determine λ1, λ2.

5. Solving (19) is equivalent to finding the zeros of the
function f(x) = 2 cot(Nx) − cotx + cot(k/2 − x),
where x = k1/2. Standard subroutines such as can
be found in Numerical Recipes4 ask for an interval
[x1, x2] that contains exactly one zero of f(x) such
that f(x1) ≷ 0, f(x2) ≶ 0. To fine tune this pro-
cedure, it is useful to preview the distribution of
zeros by plotting f(x) for 0 < x < π and various
N .

6. Solving (21) is equivalent to finding the zero at v >
0 (if one exists) of the function f(v) = κ sinh(Nv)−
sinh([N−1]v)−δ sinh v, where κ = cos(k/2), δ = 1
for λ2 = λ1, and δ = −1 for λ2 = λ1 + 1. Consider
the case λ2 = λ1. Show that a zero of f(v) exists if
Nκ > 0 and N(κ − 1) < 0, which implies (23). A
similar argument yields the allowed Bethe quantum
numbers for the case λ2 = λ1 + 1. Find the zero
of f(v) numerically for all allowed combinations of
λ2 = λ1 and λ2 = λ1+1 and determine the energies
via (22).

7. Insert (20) with k = π, φ = 0, χ = vN into (15),
and show that a(n1, n2) = i(−1)n1δn2,n1+1 as v →
∞. Show that these coefficients satisfy (11b) with
E−E0 = J . Show that the same coefficients result
from the solution for λ1 = λ2 = 3N/4. This is the
only r = 2 state whose Bethe quantum numbers
are not unique.

8. Show that the operator S2
T =

(
∑N

n=1 Sn

)2
com-

mutes with H and Sz
T by using (2). Show that

S2
T |F 〉 = ST (ST + 1)|F 〉 with ST = N/2. Conser-

vation of the total spin ST implies that all eigen-
states are at least (2ST + 1)-fold degenerate. The
level with energy E0 has ST = N/2, and hence its
degeneracy is N + 1. It is represented in all r sub-
spaces. For r = 0 it is the state |F 〉, for r = 1 it
is the one-magnon state with k = 0, and for r = 2
it is the class C1 state with k = 0. The remain-
ing one-magnon states in the r = 1 subspace have
ST = N/2 − 1, which implies an (N − 1)-fold de-
generacy. They are represented in all r subspaces
with 1 ≤ r ≤ N − 1. For r = 2, they are the class
C1 states with k 6= 0. All other r = 2 states have
ST = N/2 − 2.

9. Show that for N → ∞, the solution of f(v) =
0 with f(v) as defined in Problem 6 converges
toward v(k) = − ln cos(k/2), which substituted
into (22) yields (26). Show that cot k1,2/2 =
2 cotk/2 ∓ i. For k = π − 4π/N , this solution
is extremely accurate even for small N . Show
that |a(n1, n2)| ∝ cosh[(x − 1/2)N lnN ], where
0 < x = (n2 − n1)/N < 1. Plot this distribu-
tion versus x for several N and with appropriate

normalization. Demonstrate that all coefficients
a(n1, n2) with n2 − n1 > 1 go to zero as N → ∞.

10. Show that Eqs. (16) and (17) for λ1,2 = N/2∓1 are
solved by k1,2 = π[1∓1/(N−1)] with (E−E0)/J =

4 sin2 π/(N−1). This two-magnon scattering state
is the highest r = 2 excitation energy. The wave
function of this state has coefficients a(n1, n2) =
2(−1)n1+n2 sin[π(1/2 + n1 − n2)/(N − 1)]. Plot
|a(n1, n2)| versus n2 − n1 and compare this weight
distribution with that of a two-magnon bound
state.
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