
PHY204 Lecture 10 [rln10]

Electric Potential of Charged Disk

• Area of ring: 2πada

• Charge on ring: dq = σ(2πada)

• Charge on disk: Q = σ(πR2)

Find the electric potential at point P on the axis of the disk.

• dV = k
dq√

x2 + a2
= 2πσk

ada√
x2 + a2

• V(x) = 2πσk
∫ R

0

ada√
x2 + a2

= 2πσk
[√

x2 + a2
]R

0
= 2πσk

[√
x2 + R2 − |x|

]

Electric potential at large distances from the disk (|x| � R):

V(x) = 2πσk|x|
[√

1 +
R2

x2 − 1

]
' 2πσk|x|

[
1 +

R2

2x2 − 1
]
=

kσπR2

|x| =
kQ
|x|
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We pick up the thread from the previous lecture with the electric potential
generated by another charged object: a uniformly charged disk of radius R.

We assemble the disk from concentric rings for which we have earlier calcu-
lated the potential at points on the axis (here the x-axis). The result dV for
a ring of radius a and width da is an adaptation of the previous result.

What remains to be done is summing up the contributions to the potential
of rings with radii across the range 0 ≤ a ≤ R. This amounts to an integral
as carried out on the slide.

The result is the function V (x) representing the electric potential for points
on the axis a distance x away from the disk.

If we had picked a point away from the x-axis, at a point x, y, z in some
coordinate system (not shown) we would need to calculate (with considerable
additional effort) a function V (x, y, z).

For large distances, |x| � R, we can expand the expression for V (x) as shown
in the last line on the slide and recover the electric potential of a point charge.
From afar, a charged object of any shape acts like a point charge.
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Electric Field and Electric Potential

Determine the field or the potential from the source (charge distribution):

~E =
1

4πε0

∫ dq
r2 r̂ r

dE dV

r

dq
V =

1
4πε0

∫ dq
r

Determine the field from the potential: ~E = − ∂V
∂x

î− ∂V
∂y

ĵ− ∂V
∂z

k̂

Determine the potential from the field: V = −
∫ ~r

~r0

~E · d~s

• Systems with ~E = Ex(x)î: Ex = − dV
dx

⇔ V(x) = −
∫ x

x0
Exdx

• Application to charged ring: Ex =
kQx

(x2 + a2)3/2 ⇔ V =
kQ√

x2 + a2

• Application to charged disk (at x > 0): Ex = 2πσk
[

1− x√
x2 + R2

]
⇔ V = 2πσk

[√
x2 + R2 − x

]
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We now take a closer look at the relation between electric potential V and
electric field ~E. Previously we have calculated either quantity independently
as an integral over the distribution of charge on objects of specific shape.

While field and potential can be determined independently as different inte-
grals over charge distributions, the results are not independent.

If we know the electric potential V (x, y, z) generated by a charge configura-
tion, we can derive from that function three functions Ex(x, y, z), Ey(x, y, z),
and Ez(x, y, z), which represent the components of the electric field.

Conversely, if we know the electric field as those three functions, we can
derive from them the electric potential as an integral of the dot product
~E · d~s from some reference point ~r0 to the point ~r = (x, y, z).

How do we differentiate the function V (x, y, z) in three different ways? How

do we integrate ~E · d~s along a specific path between two points? These are
questions that we are going to answer in a gentle progression from simple to
more complex scenarios.

If in a particular case the potential depends on one coordinate only, V =
V (x), then the associated electric field only has one component, ~E = Ex(x)̂i.
The function Ex(x) can be calculated from the function V (x) via derivative.

Conversely, the potential V (x) at position x can be calculated from the func-
tion Ex(x) via an integral. Both operation are spelled out in the first item on
the slide and then applied, in the second and third items, to results previously
established for the cases of a charged ring and a charged disk.

As a caveat we note that the relation between electric field and electric po-
tential discussed here is only exact in electrostatics. There are additional
sources of ~E, not derivable from V , in electrodynamics (a later topic).
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Electric Potential and Electric Field in One Dimension (1)

For given electric potential V(x)find the electric field

(a) Ex(1m),
(b) Ex(3m).

For given electric field Ex(x) and given reference potential potential V(0) = 0 find the electric potential

(c) V(2m),
(d) V(4m).

10 2 3 4

0

1

2

V[V]

x[m]

10 2 3 4

0

1

2

x[m]

E  [V/m]x
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On this page and the next, we practice the calculation of electric field from
electric potential and vice versa for the case where only one spatial coordinate
is in play. We are dealing with the scalar quantity V = V (x) and the vector

quantity ~E = Ex(x)̂i. The operations to be performed are

Ex = −dV
dx

, V (x) = −
∫ x

x0

Exdx.

In the graph on the left, the function V (x) is given graphically and we wish to
know the electric field at two positions. The derivative dV/dx is determined
by the slope of the curve at those two positions. It is positive at the first
point and zero at the second. Taking into account the minus sign in the
relation between potential and field we thus obtain the results,

Ex(1m) = −1V/m, Ex(3m) = 0.

In the graph on the right, it is the function Ex(x) that is given graphically,
from which we wish to determine the electric potential at two positions. For
that purpose we have to choose a reference position and perform the integral
shown above. The most convenient reference point in this case is x0 = 0.
The integral is the area under the curve. For the position x = 2m, the area
is that of a triangle. For the position x = 4m we have to add the area of a
square to that of the triangle. Then we must not forget the minus sign in
the relation between field and potential. The results are

V (2m) = −2V, V (4m) = −6V.
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Electric Potential and Electric Field in One Dimension (2)

For given electric potential V(x) find the electric field

(a) Ex(0.5m), (b) Ex(1.5m),
(c) Ex(2.5m), (d) Ex(3.5m).

For given electric field Ex(x) and given reference potential potential V(0) = 0
find the electric potential

(e) V(1m), (f ) V(2m), (g) V(4m).
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Here we can practice the skills we have learned on the previous page. The
graphs representing the functions V (x) and Ex(x) are a bit more complex.
When we choose x0 = 0 as the reference position, it means that the electric
potential vanishes at that point.

What matters in the curve on the left is the slope at four different positions.
What matters in the curve on the right is the area under it between x0 = 0
and two different positions to the right.

Here again are the relevant relations expressed analytically,

Ex = −dV
dx

, V (x) = −
∫ x

x0

Exdx.

When we carry out the operations we arrive at the following results:

Ex(0.5m) = 0, Ex(1.5m) = 1V/m, Ex(2.5m) = 0, Ex(3.5m) = −2V/m.

V (1m) = −1V, V (2m) = −1V, V (4m) = −4V.

If we know the electric potential at just one position, we cannot predict
what the electric field is at the same position. We cannot take derivatives of
numbers, only of functions. The electric field at a point does not depend on
the value of the potential at that point, but on how the potential varies with
position.
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Electric Field from Electric Potential in Two Dimensions

• Given is the electric potential: V(x, y) = ax2 + bxy3 with a = 1V/m2, b = 1V/m4.
• Find the electric field: ~E(x, y) = Ex(x, y)î + Ey(x, y)ĵ via partial derivatives.

Ex = − ∂V
∂x

= −2ax − by3, Ey = − ∂V
∂y

= −3bxy2

E  = 0

E  = 0

V = 0

x

y E  = 0

E  = −2V/m

V = 1V

x

y

E  = 0
E  = −1V/m

V = 0

x

y E  = −3V/m

E  = −3V/m

V = 2V

x

y

0 1m

y

x
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If the electric potential varies in more than one direction, the associated
electric field varies in as many directions, both in magnitude and direction.

Here we consider a situation where the electric potential is a function V (x, y),
explicitly stated on the slide. The electric field then has two components,
which are both functions of two coordinates and can be determined via partial
derivatives as carried out on the slide.

Partial derivatives are operations acted on functions with more than one
variable such as V (x, y). Unlike in an ordinary derivative, for which we can
use the familiar notation,

V (x), V ′(x) =
dV

dx
, V ′′(x) =

d2V

dx2
, . . . ,

in partial derivatives our notation must be more explicit to avoid ambiguity:

V (x, y),
∂V

∂x
,

∂V

∂y
,

∂2V

∂x2
,

∂2V

∂y2
,

∂2V

∂x∂y
, . . .

There are two different first derivatives and three different second derivatives.
In a partial derivative, we treat all variables as constants except the one with
respect to which we perform the derivative. Note the special symbol in use.

Once the functions Ex(x, y) and Ey(x, y) are calculated from the function
V (x, y) via partial derivatives, we can determine the magnitude and the
direction of the electric field at any point. We have done it before may
times.
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Electric Potential from Electric Field in Two Dimensions

• Given is the electric field: ~E = −(2ax + by3)î− 3bxy2 ĵ with a = 1V/m2, b = 1V/m4.
• Find the electric potential V(x, y) via integral along a specific path:

Red path (0, 0)→ (0, y)→ (x, y):

V(x, y) = −
∫ y

0
Ey(0, y)dy−

∫ x

0
Ex(x, y)dx

= 0 +
∫ x

0
(2ax + by3)dx = ax2 + bxy3

Blue path (0, 0)→ (x, 0)→ (x, y):

V(x, y) = −
∫ x

0
Ex(x, 0)dx−

∫ y

0
Ey(x, y)dy

=
∫ x

0
(2ax)dx +

∫ y

0
(3bxy2)dy = ax2 + bxy3

x
(x,0)

(x,y)
(0,y)

(0,0)

y
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If we know the electric field as a vector function ~E(x, y), such as the one
calculated on the previous page, we can recover the electric potential V (x, y)
from it by performing an integral from a reference point, say (0, 0), to a
generic point (x, y).

Unlike in the case of single coordinate, where there is just one direct path
between two point, here we must choose one. On the slide we perform the
integral along the red path and then again along the blue path.

When we integrate along the vertical stretch, we must keep the coordinate x
fixed at the value that corresponds to the location of the vertical line. Those
locations are different for the red and the blue vertical lines.

Likewise, when we integrate along a horizontal stretch, we must keep y fixed
at the value corresponding to the location of the horizontal line.

There are infinitely may different paths between the points (0, 0) and (x, y).
The complete integral is path-independent. Note, however, that the inte-
gral along the blue and red horizontal portions or the blue and red vertical
portions are different.

Be aware that the integral from (0, 0) to (x, y) is not path-independent for
any vector function. Electrostatic fields are special. They can always be
derived from an electric potential V (x, y). The mathematical make-up of
~E(x, y) is such that the potential can be recovered without ambiguity.
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Electric Potential of a Charged Plane Sheet
Consider an infinite plane sheet perpendicular to the x-axis at x = 0.

The sheet is uniformly charged with charge per unit area σ.

• Electric field (magnitude): E = 2πk|σ| = |σ|
2ε0

• Direction: away from (toward) the sheet if σ > 0 (σ < 0).
• Electric field (x-component):

Ex = ±2πkσ.
• Electric potential:

V = −
∫ x

0
Exdx = ∓2πkσx.

• Here we have used x0 = 0
as the reference coordinate.

E x

V

x

x

E x

V

x

x

positively charged sheet negatively charged sheet
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We complete this lecture by calculating the electric potential of several
charged objects from the electric field determined earlier via Gauss’s law.
This involves an integration along a specific path. In all examples that we
consider, only one coordinate is relevant, which makes the choice obvious.

We know from lecture 5 that the electric field on both sides of a uniformly
charged plane sheet is uniform. It has the same direction and magnitude at
any point in the space on one or the other side. The field is away from a
positively charged sheet and toward a negatively charged sheet.

Since ~E is directed perpendicular to the plane of the sheet, we choose a path
in that direction and declare it to be the x-axis with the sheet at x = 0. The
position x0 = 0 is a convenient choice of reference point. The integration is
carried out on the slide.

Let us have a look at the graphical representations of field and potential. It
is important that we can properly read such graphs.

The diagrams on top represent the x-component of the vector ~E. Positive
(negative) Ex means that the ~E is directed right (left). A positively charged
particle is repelled from the positively charged sheet and attracted toward
the negatively charged sheet by the force ~F = q ~E. The opposite is the case
for a negatively charged particle.

The two diagrams below represent the scalar quantity V . The potential is
zero at x = 0 in both cases. When we place a positively charged particle into
a positive (negative) potential, it has positive (negative) potential energy.
The opposite is the case if we place a negatively charged particle.

A charged particle is accelerated in the direction that leads to lower potential
energy, which is consistent with the direction of force it experiences.
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Electric Potential of a Uniformly Charged Spherical Shell

• Electric charge on shell: Q = σA = 4πσR2

• Electric field at r > R: E =
kQ
r2

• Electric field at r < R: E = 0

• Electric potential at r > R:

V = −
∫ r

∞

kQ
r2 dr =

kQ
r

• Electric potential at r < R:

V = −
∫ R

∞

kQ
r2 dr −

∫ r

R
(0)dr =

kQ
R

• Here we have used r0 = ∞ as the
reference value of the radial coordinate.
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We now determine the electric potential inside and outside a uniformly
charged spherical shell. From an application of Gauss’s law in lecture 6,
we know that the electric field vanishes inside the shell. Outside the shell we
have the familiar Coulomb field. The results are restated in the first three
items.

The electric field has a radial direction, which makes the distance r from the
center the only relevant coordinate in the integral expression of the electric
potential. It is convenient the set the reference position at r0 = ∞, where
the electric field vanishes asymptotically.

The integral for a point on the outside is worked out in the fourth item and
for a point on the inside in the fifth item. In the latter case, we split the
range of integration into two intervals.

In the interval from ∞ to R, the Coulomb field applies Then in the interval
from R to the final destination r, the field vanishes. The vanishing second
integral implies that the electric potential is the same everywhere inside the
shell.

We can recover the electric field from the electric potential by performing
the derivative,

E = −dV
dr
,
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Electric Potential of a Uniformly Charged Solid Sphere

• Electric charge on sphere: Q = ρV =
4π

3
ρR3

• Electric field at r > R: E =
kQ
r2

• Electric field at r < R: E =
kQ
R3 r

• Electric potential at r > R:

V = −
∫ r

∞

kQ
r2 dr =

kQ
r

• Electric potential at r < R:

V = −
∫ R

∞

kQ
r2 dr−

∫ r

R

kQ
R3 r dr

⇒ V =
kQ
R
− kQ

2R3

(
r2 − R2

)
=

kQ
2R

(
3− r2

R2

)
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Here we repeat the same calculation for a uniformly charged solid sphere.
We again start from the radial dependence of the electric field determined in
lecture 6 via Gauss’s law.

The result for the electric field on the outside only depends on the total
charge. It does not matter whether that charge is in a point, on a shell, or
uniformly distributed across the volume of a solid sphere.

The electric field inside the solid sphere does not vanish, which implies that
the electric potential, inferred via integration, is not a constant.

The result is shown graphically on the slide. We see that the potential has a
smooth maximum at the center of the sphere. A smooth maximum has zero
slope, meaning zero derivative, which confirms that the electric field vanishes
at the center of the sphere.

The graph for V (r) has an inflection point at r = R. Here the slope has a
maximum, which confirms that the electric field has maximum strength at
the surface of the charged sphere.
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Electric Potential of a Uniformly Charged Wire

• Consider a uniformly charged wire of infinite length.
• Charge per unit length on wire: λ (here assumed positive).

• Electric field at radius r: E =
2kλ

r
.

• Electric potential at radius r:

V = −2kλ
∫ r

r0

1
r

dr = −2kλ [ln r− ln r0]

⇒ V = 2kλ ln
r0

r
• Here we have used a finite, nonzero reference

radius r0 6= 0, ∞.
• The illustration from the textbook uses Rref for

the reference radius, R for the integration
variable, and Rp for the radial position of the
field point.
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We have determined the electric field of a long charged rod or wire in lecture
5 using Gauss’s law. The result, restated on the slide, holds at any point
outside the wire.

The integral that produces the potential from the field is readily performed
for an arbitrary reference value r0. Unlike in the previous cases, neither
r0 = 0 nor r0 =∞ would be a suitable choice because the function,

V (r) = 2kλ ln
r0
r
,

diverges for either choice, either to −∞ or to +∞. The most natural choice
for r0 is the radius of the wire.

When we recover the electric field from this expression for the potential via
the derivative, E = −dV/dr, the choice of r0 makes no difference.
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Electric Potential and Electric Field in Two Dimensions

Given is the electric potential V(x, y) = cxy2 with c = 1V/m3.

(a) Find the value (in SI units) of the electric potential V at point A.
(b) Find the components Ex, Ey (in SI units) of the electric field at point B.

y

x
0 1 2

[m]

B

A
[m]

2

1

0
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This is the quiz for lecture 10.

The instructions for part (b) are on page 5.
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