
PHY204 Lecture 11 [rln11]

Electric Potential of a Uniformly Charged Spherical Shell

• Electric charge on shell: Q = σA = 4πσR2

• Electric field at r > R: E =
kQ
r2

• Electric field at r < R: E = 0

• Electric potential at r > R:

V = −
∫ r

∞

kQ
r2 dr =

kQ
r

• Electric potential at r < R:

V = −
∫ R

∞

kQ
r2 dr −

∫ r

R
(0)dr =

kQ
R

• Here we have used r0 = ∞ as the
reference value of the radial coordinate.
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The first part of this lecture is about electric potential on and around electric
conductors at equilibrium. We recall from lecture 6 that there is no electric
field inside the conducting material. Hence the integral of ~E · d~s along a
path through conducting material vanishes. We conclude that the electric
potential at all points on a conductor at equilibrium is the same.

From the previous lecture we know that the electric potential of a uniformly
charged shell is that of a point charge on the outside and a constant on the
inside as stated on the slide.

The electric potential inside and outside a solid conducting sphere is exactly
the same. In both cases, the excess charge Q is all at radius R and there is
no electric field at r < R.

The expression for the electric potential uses a reference point out at infinity,
r0 =∞. All that matters in applications are potential differences.

When we calculate potentials for two charged conductors, say V1 and V2, the
physically relevant potential difference, ∆V = V1 − V2, is only correct if the
same reference point has been used in the calculation of V1 and V2. This is
an important point that we must keep in mind.
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Electric Potential of Conducting Spheres (2)

Consider a conducting sphere with radius r = 15cm and electric potential V = 200V relative to a point at
infinity.

(a) Find the charge Q and the surface charge density σ on the sphere.
(b) Find the magnitude of the electric field E just outside the sphere.
(c) What happens to the values of Q, V, σ, E when the radius of the sphere is doubled?

15cm

30cm
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In this little exercise we consider, say, a balloon made of an elastic material
that is an electric conductor. Its initial radius is given as well as its potential.
Note the mention of the reference point.

(a) We use the result of the previous page to calculate the charge on the
balloon.

V =
kQ

r
⇒ Q =

V r

k
=

(200V)(0.15m)

9× 109Vm/C
= 3.33× 10−9C.

The spherical symmetry ensures that the charge is uniformly distributed:

σ =
Q

4πr2
=

3.33× 10−9C

4π(0.15m)2
= 1.18× 10−8C/m2.

(b) To determine the electric field just outside the conducting surface, we
pull another result from lecture 6 that we derived using Gauss’s law:

E =
σ

ε0
=

1.18× 10−8C/m2

8.85× 10−12C2N−1m−2
= 1.33× 103N/C.

(c) When we inflate the balloon to twice its original radius, the surface area
goes up by a factor of four. What happens to the quantities listed? The
charge does not change. The potential, which is inversely proportional to
the radius of the sphere decreases to half its value. The same charge now
being spread over four times the original surface area reduces the surface
charge density to one quarter of the original value. The electric field, which
is proportional to the surface charge density, decreases by the same factor.
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Electric Potential of Conducting Spheres (3)

A spherical raindrop of 1mm diameter carries a charge of 30pC.

(a) Find the electric potential of the drop relative to a point at infinity under the assumption that it is a
conductor.

(b) If two such drops of the same charge and diameter combine to form a single spherical drop, what is its
electric potential?

r r

q q

1

V1 1 V

1

1 1

Vq
2 2

r2
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What happens to the electric potential of tiny electrically charged water
droplets, the constituents of mist and clouds, when they collide and merge
into bigger droplets? The answer is of meteorological relevance.

Consider two such droplets, each of radius r1 = 5 × 10−4m and carrying a
charge q1 = 3.0×10−11C. The electric potential of each droplet (a conducting
sphere), is

V1 =
kq1
r1

= 540V.

When the droplets collide and merge, the charge q2 = 2q1 is now spread over
the surface of a sphere with twice the volume, implying that the radius is
about 25% larger:

4π

3
r32 = 2

4π

3
r31 ⇒ r2 = 21/3r1 ' 1.26 r1.

This has the consequence that the electric potential goes up significantly:

V2 =
kq2
r2

= 857V.

Charged water droplets are a common occurrence in the atmosphere under
humid conditions as a result of ionization processes caused by solar radiation.
Large potential differences between clouds and the ground can build up.
Strong electric fields associated with these potential differences can trigger
events of fast electric discharge (lightning).
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Electric Potential of Conducting Spheres (1)
A conducting sphere of radius r1 = 2m is surrounded by a concentric conducting spherical shell of radii
r2 = 4m and r3 = 6m. The graph shows the electric field E(r).

(a) Find the charges q1, q2, q3 on the three conducting surfaces.
(b) Find the values V1, V2, V3 of the electric potential on the three conducting surfaces relative to a point at

infinity.
(c) Sketch the potential V(r).

E[V/m]

−3

+5

2 4

6 r[m]
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Here we revisit a configuration that we earlier analyzed in the context of
Gauss’s law applied to conductors with spherical symmetry: a conducting
sphere surrounded by a conducting spherical shell (lecture 7). From what is
given, we can reason as follows:

(a) The given electric field E1 = 5V/m determines the surface charge density
on the sphere, which, in turn, determines the charge q1:

σ1 = ε0E1 = 4.41× 10−11C/m2 ⇒ q1 = (4πr21)σ1 = 2.22× 10−9C.

Gauss’s law then dictates that the charge q2 on the inner surface of the shell
must be q2 = −q1 = −2.22 × 10−9C. We infer the charge q3 on the outer
surface of the shell from the given electric field E3 = −3V/m:

σ3 = ε0E3 = −2.66× 10−11C/m2 ⇒ q3 = (4πr23)σ3 = −1.20× 10−8C.

(b) Here we apply the method of calculating electric potential from electric
field practiced in the previous lecture. We start at the reference point r0 =∞
and integrate first to r3, then continue to r2, and finally to r1.

We have already carried out the first integral on page 1 of this lecture:
V3 = kq3/r3 = −18.0V. The electric potential does not change inside the
conducting material of the shell. Hence we conclude that V2 = V3 = −18.0V.

The electric field between r2 and r1 is E(r) = kq1/r
2, which we use to continue

our integral:

V1 = V2 − kq1
∫ r1

r2

dr

r2
= V2 + kq1

[
1

r1
− 1

r2

]
= 18.0V + 5.00V = −13.0V.

The potential does not change inside the conducting sphere.
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Electric Potential of Conducting Spheres (4)

A positive charge is distributed over two conducting spheres 1 and 2 of unequal size and connected by a long
thin wire. The system is at equilibrium.

Which sphere (1 or 2)...

(a) carries more charge on its surface?
(b) has the higher surface charge density?
(c) is at a higher electric potential?
(d) has the stronger electric field next to it?

1 2
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We finish (for now) our discussion of electric potential in the context of
conductors at equilibrium with this quiz-like exercise.

The key relations for charged spherical conductors of radius R that we should
have have at our fingertips are the following:

V =
kQ

R
, E =

kQ

R2
, E =

σ

ε0
, Q = (4πR2)σ.

The first of five questions is the following: which of the four remaining ques-
tions should we tackle first? The answer is: question (c).

(c) The two spheres plus the wire are one conductor. Hence the electric
potential is the same for both spheres: V1 = V2.

(a) The equality of the potentials implies that the bigger sphere carries more
charge. We reason as follows:

V1 = V2 ⇒ kQ1

R1

=
kQ2

R2

⇒ Q1

Q2

=
R1

R2

> 1.

(b) While the bigger sphere carries more charge, the smaller sphere has the
higher surface charge density:

σ1
σ2

=
Q1/4πR

2
1

Q2/4πR2
2

=
Q1

Q2

R2
2

R2
1

=
R2

R1

< 1.

(d) The electric field just outside the sphere is proportional to the surface
charge density. Hence the smaller sphere has the stronger field.
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Electric Potential Energy of Two Point Charges

Consider two different perspectives:

#1a Electric potential when q1 is placed: V(~r2)
.
= V2 = k

q1

r12

Electric potential energy when q2 is placed into potential V2: U = q2V2 = k
q1q2

r12

#1b Electric potential when q2 is placed: V(~r1)
.
= V1 = k

q2

r12

Electric potential energy when q1 is placed into potential V1: U = q1V1 = k
q1q2

r12.

#2 Electric potential energy of q1 and q2:

U =
1
2

2

∑
i=1

qiVi,

where V1 = k
q2

r12
, V2 = k

q1

r12
.

2

x

z

y

q
2

r
12

q
1

1

r

r
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What is the electric potential energy of a configuration of point charges in
some region of space? We begin the analysis of this question with the case
of two point charges q1 and q2 using the tools developed in lecture 8.

When we first place charge q1 at position ~r1, it generates an electric potential
around it. At position ~r2, where we next place charge q2, this potential has
the value V2. We have learned that when we place charge q2 into the potential
V2, it has potential energy U2 = q2V2.

Conversely, when we first place charge q2 at position ~r2, it generates a poten-
tial around it. At position ~r1, where we next place charge q1, this potential
has the value V1. Charge q1 has potential energy U1 = q1V1.

We are not surprised to see that the result for the potential energy,

U1 = U2
.
= U = k

q1q2
r12

,

bears no trace of the sequence in which the charges are placed into the region
of space, which justifies the declaration that it represents the potential energy
of a configuration of two point charges at equilibrium, plain and simple.

In preparation of a generalization to more than two point charges, we rewrite
this expression in a more symmetric form as stated near the bottom of the
slide. In this rendition, each particle generates a potential and each particle
has a potential energy. The over-counting of contributions is compensated
by the factor 1

2
.
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Electric Potential Energy of Three Point Charges

#1 Place q1, then q2, then q3, and add all changes in potential energy:

U = 0 + k
q1q2

r12
+ k

(
q1q3

r13
+

q2q3

r23

)
= k

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
.

#2 Symmetric expression of potential energy U in terms of the potentials Vi

experienced by point charges q1:

U =
1
2

3

∑
i=1

qiVi = k
(

q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
,

where
V1 = k

(
q2

r12
+

q3

r13

)
,

V2 = k
(

q1

r12
+

q3

r23

)
,

V3 = k
(

q1

r13
+

q2

r23

)
.

q
2

r
12

q
1

x

z

q
3

r23

r13

y
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Here the generalized expression for the electric potential energy,

U =
1

2

N∑

i=1

qiVi, Vi = k
∑

j 6=i

qj
rij
,

of a configuration of N charged particles at equilibrium is illustrated for the
case N = 3. The expression is arrived at in two different ways.

In item #1 we first place charge q1, which generates a potential for charges
q2 and q3. Its potential energy is zero because it is placed into zero potential.

Next we place charge q2 into the potential generated by charge q1. Its po-
tential energy is nonzero. It also generates a potential for charge q3.

Finally, we place charge q3. Its potential energy has two terms, contributed
by the potentials generated q1 and q2 placed previously. The total potential
energy has 0 + 1 + 2 = 3 terms as shown.

In item #2 we use the above expression. The Vi in that expression represents
the potential experienced by charge qi as if it is placed last. Therefore, each
of the three Vi has two terms. They add up to 3×2 = 6 terms, which combine
into 3 pairs of identical terms. The factor 1

2
takes care of the over-counting.

The final expression is the same for both ways of counting contributions.

The expression of electric potential energy developed here omits self-energy
terms. We merely mention this as a caveat here. We are not yet ready to
discuss self-energies of charged particles. When we compare the potential
energy of point charges in different (static) configurations, self-energies have
no impact.
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Electric Dipole Potential

• Use spherical coordinates: V = V(r, θ) independent of azimuthal coordinate φ.

• Superposition principle: V = V+ + V− = k
(

q
r+

+
(−q)

r−

)
= kq

r− − r+
r−r+

• Large distances (r� L): r− − r+ ' L cos θ, r−r+ ' r2 ⇒ V(r, θ) ' k
qL cos θ

r2

• Electric dipole moment: p = qL (magnitude)

• Electric dipole potential: V(r, θ) ' k
p cos θ

r2

0

−q

L

+q

r
r

r

θ

−

+

x

tsl100

We have introduced the electric dipole in lecture 3 with focus on the electric
field generated by it. On the slide, the electric-dipole field is visualized by a
set of field lines. Here we continue the discussion of the electric dipole with
focus on the electric potential generated around it.

It is simple enough the calculate the electric potential of two opposite point
charges ±q positioned a distance L from each other.

Most dipoles of interest in physics, chemistry, engineering, and biology are
of molecular origin with L in the nanometer range. Therefore, in most appli-
cations we are interested in the potential at distances much larger than the
size of the molecule, r � L.

A simplified asymptotic expression V (r, θ) for the electric potential of an

electric dipole ~p = q~L is worked out on the slide. Note that θ is the angle
between the vector ~L, which points from the negative to the positive charge,
and the vector ~r which points from the dipole (source point) to the field
point.

Molecular dipoles have complex charge distributions. Calculating the dipole
moment ~p from it is more complicated. Tabulated data exist for its magnitude
and its direction relative to the atomic positions on the molecule. The only
thing that goes into the expression for the electric potential is the vector ~p.
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Unit Exam I: Problem #3 (Spring ’11)
Consider a region of space with a uniform electric field E = 0.5V/m î. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1 and 2?
(b) If an electron (m = 9.11× 10−31kg, q = −1.60× 10−19C) is released from rest at point 0, toward which

point will it start moving?
(c) What will be the speed of the electron when it gets there?

3

2

1

4

0

1m 3m 5m

1m

3m

5m

y

x

E
Solution:

(a) V1 = −(0.5V/m)(2m) = −1V, V2 = 0.
(b) F = qE = −|qE|î (toward point 3).
(c) ∆V = (V3 −V0) = 1V, ∆U = q∆V = −1.60× 10−19J,

K = −∆U = 1.60× 10−19J, v =

√
2K
m

= 5.93× 105m/s.

Alternatively:
F = qE = 8.00× 10−20N, a =

F
m

= 8.78× 1010m/s2,

|∆x| = 2m, v =
√

2a|∆x| = 5.93× 105m/s.
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We conclude this lecture with two simple applications of electric potential
previously used as exam problems.

We begin with a region of uniform electric field. The mention of this specifi-
cation rings a few bells that tell us in which compartment of our toolbox to
look for the necessary resources.

Uniform field means constant force on charged particles, which, in turn,
means motion with constant acceleration.

We have figured out the relation between a uniform field and the associated
potential early on in lecture 8.

Part (c) we can solve by either using energy conservation or motion with
constant acceleration.
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Unit Exam I: Problem #1 (Spring ’09)
Consider two point charges positioned on the x-axis as shown.

(a) Find magnitude and direction of the electric field at point P.
(b) Find the electric potential at point P.
(c) Find the electric potential energy of an electron (mass m = 9.1 × 10−31kg, charge q = −1.6 × 10−19C)

when placed at point P.
(d) Find magnitude and direction of the acceleration the electron experiences when released at point P.

+8nC −8nC P

2m2m

x

Solution:

(a) Ex = +k
8nC
(4m)2 + k

(−8nC)

(2m)2 = 4.5N/C − 18N/C = −13.5N/C (directed left).

(b) V = +k
8nC
4m

+ k
(−8nC)

2m
= 18V − 36V = −18V.

(c) U = qV = (−18V)(−1.6 × 10−19C) = 2.9 × 10−18J.

(d) ax =
qEx

m
=

(−1.6 × 10−19C)(−13.5N/C)

9.1 × 10−31kg
= 2.4 × 1012ms−2 (directed right).
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The main difference from the previous situation is that here we are dealing
with an electric field that is not uniform. Therefore, we go to different
compartments in our mental toolbox.

Parts (a) through (c) could not be more elementary. Explanations are hardly
needed.

The acceleration is no longer constant when something moves. Nevertheless,
the relations between acceleration, force, and electric field remain the same.
Those are all we need in part (d)
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Electric Potential and Potential Energy: Application (9)

Consider four point charges of equal magnitude positioned at the corners of a square as shown. Answer the
following questions for points A, B, C.

(1) Which point is at the highest electric potential?
(2) Which point is at the lowest electric potential?
(3) At which point is the electric field the strongest?
(4) At which point is the electric field the weakest?

A

B

C
−q −q

+q+q
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This is the quiz for lecture 11.

In one of the four questions, the answer is a tie between two points.
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