PHY204 Lecture 20 ..

Charged Particle Moving in Uniform Electric Field T

« Electric field E is directed up.
- Electric force: F = gE (constant)

) F -
- Acceleration: 7= - = L E = const.
m m

« Horizontal motion: ay = 0 = vy (t) = vy = x(t) = vot

. . 1
+ Vertical motion: a, = %E = oy(t) =ayt = y(t) = antz

+ The path is parabolic: y = (2:17}32) 22
ﬂlvo

= A . F
- F changes direction and magnitude of 3. v
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Here and on the next page we discuss how the motion of a charged particle
is affected by the presence of a uniform electric or magnetic field.

In both cases we see Newton’s second law, F = md, in action. An applied
force causes an acceleration, which is the rate of a velocity change. The
velocity change can mean a change in speed (change in magnitude of velocity)
or a turn (change in direction of velocity) or both.

Consider the electric force, F= qE . As the particle moves through a region
of uniform electric field, the electric force remains unchanged, implying that
the acceleration @ is constant.

Motion with constant acceleration is a familiar matter from mechanics. The
equation of motion,

. dv F

=G
is solved separately for the z- and y-components of the velocity vector v =
Vel + vyj. Integration then yields the position vector r = i+ yj.

If, as shown on the slide, the applied force acts in a direction perpendicular
to the initial velocity v of the charged particle, then the path traced out by
the particle has parabolic shape.

In the example shown the velocity changes in both magnitude and direction.



Charged Particle Moving in Uniform Magnetic Field A

- Magnetic field B is directed into plane.

- Magnetic force: F = qo x B (not constant)

+ F L% = Fchanges direction of 3only = v = v,.

- Fis the centripetal force of motion along circular path.

2
« Radius: ﬂ:qu = ="
r qB

- Angular velocity: w = & = a8
S Vo= =

-Period:T:z—n:@ {@/V
w qB
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Here we consider the magnetic force, F = qu X B. As the particle moves
through a region of uniform magnetic field with initial velocity 4 as shown,
that force does not remain constant.

The cross product tells us that the magnetic force F s perpendicular to
the velocity v. We know from mechanics that when the applied force is
perpendicular to the velocity, it changes only the direction of ¢ but not its
magnitude (the speed v).

As the velocity ¢ changes direction so does the force F. Both quantities
change direction at the same (constant) rate.

Motion in a plane where the velocity changes direction at a constant rate
is circular in shape. The magnetic force in that situation plays the role of
centripetal force.

The centripetal force, mv?/r, is the force required to keep an object of mass
m on a circular path of radius r. This force can be provided in different
ways, e.g. by the tension in the string to which the object is attached or by
the gravitational attraction to the earth in the case of the orbiting moon.

In the situation here, the centripetal acceleration is provided by the magnetic
force of constant magnitude F' = quB. Hence we can equate centripetal force
required and magnetic force provided. The radius of the orbit is then inferred
from that equation.

Note that the period T of the circular motion is independent of the radius r
of the orbit and the speed v of the particle.



Velocity Selector T

A charged particle is moving horizontally into a region with “crossed” uniform fields:
- an electric field E pointing down,
+ amagnetic field B pointing into the plane.

Forces experienced by particle:
- electric force F = gE pointing down,

+ magnetic force B = quB pointing up.

Forces in balance: gE = quB.

X X X X X X X X X X
. E
Selected velocity: v = B X X X X X
X | X X | X X X | X X
. . . E
Trajectories of particles X X|X|x|[x]|x]|x]|x]|x x
with selected velocity x x| xlIx]xlIx]xlx x
are not bent. e |
XX X X X
X X X X X X X X X X
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Many experiments in physics involve the scattering of charged particles (elec-
trons or protons) from all kinds of material samples. For that purpose it
necessary to produce beams of particles that all have the same velocity .

Protons (with charge ¢ = +¢) can be collimated into a beam by having them
pass through small holes in a pair of parallel shielding plates. The particles
that make it through both holes then all move in the same direction.

The velocity selector portrayed on the slide is an important tool for trimming
the beam down to particles with just one speed.

All particles coming in from the left initially move in the same direction but
have different speeds. Fast particles experience a stronger magnetic force
directed 1 than slower particles. All particles experience the same electrical
force directed J|.

The two opposing forces are in balance for particles moving with one partic-
ular speed: v = E/B.

The paths of fast particles are bent upward and the paths of slow particles
downward. A third parallel shielding plate with a small hole will only let
particles pass that have the selected speed v = E/B.

The selected speed can be controlled by the experimenter via the electric or
magnetic field.



Measurement of ¢/, for Electron mianm

First experiment by J. J. Thomson (1897)

Method used here: velocity selector

Equilibrium of forces: ¢E = evB = v = f}

. 1
Work-energy relation: eV = Enwz = p”
e

e E2
Eliminate v: — = ——— ~1.76 x 10"'C/k
iminate v o WV X /kg
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Who discovered America? Columbus? The Vikings? The Chinese? Whoever
got here first.

Who discovered that Jupiter has moons? Whoever saw them first. A tele-
scope and the urge to look at Jupiter were needed. Galileo had both.

J. J. Thomson discovered the electron in 1897. He could not get there, he
could not see it, how did he do it?

Thomson identified cathode rays as beams charged particles. He could not
tell what their mass m or their charge e was but he could tell that e/m had
a unique value.

A charged capacitor produces a glow in a vacuum tube when the cathode
(negatively charged plate) is heated up. The glow continues past the anode
(positively charged plate) when it has a hole or slit.

Something must be moving from cathode to anode: in all likelihood a massive
particle with negative charge. When that particle moves across a potential
difference V' between cathode and anode, it picks up the amount eV of kinetic
energy. If that accounts for most of its kinetic energy, the particle velocity

is v =1+/2eV/m.

The velocity selector (see previous page) allows an independent determina-
tion of the velocity: v = E/B. Bingo! From the two relations, a value for
e/m can be extracted.

It took more than a decade before the elementary charge e and the electron
mass m were determined independently (see next page).



Measurement of ¢ and 1, for Electron

First experiment by R. Millikan (1913)

Method used here: balancing weight and electric force on oil drop
Radius of oil drop: r = 1.64um

Mass density of oil: p = 0.851g/cm?

Electric field: E = 1.92 x 10°N/C

. T L Y 14 cover
Mass of oil drop: m = 3P= 157 x 10~ kg —
Equilibrium of forces: neE = mg l rfﬁ oil
. . mg —_ |spray microscope
Quantized quantity: T = ne. several thousand — 1 -

volts d L ‘J‘

Number of excess elementary charges: n =5

Elementary charge: e = % ~16x107C = uniform electric field

Use result from J. ). Thomson: % ~1.76 x 10'C/kg

Mass of electron: m, ~ 9.1 x 10~'kg
tsla32

Millikan’s experiment, which produced the first determination of the electron
mass, was also based on balancing two forces: the gravitational force and the
electric force acting on a charged oil droplet.

The oil droplets are tiny and carry few elementary charges, created via some
ionization technique that either knocks off or pastes on electrons. The exact
number is not controllable. The key point is that the charge carried by the
oil droplet is quantized, a multiple of the suspected elementary charge e.

The mass of the oil droplets can be determined from its size and the density
of the material. The gravitational field g is given, whereas the electric field
E' is controllable.

Balancing the two forces yields a value for ne, where n is an integer. Data
from several droplets makes it straightforward to determine the common unit,
which is the elementary charge e.

Once we know e, we can use the result from J. J. Thomson’s experiment to
determine the electron mass m..

The slide walks us through one (fictitious) set of data.



Mass Spectrometer

Purpose: measuring masses of ions.

- Charged particle is accelerated by moving through potential difference |AV|.
- Trajectory is then bent into semicircle of radius r by magnetic field B.

L. 1
« Kinetic energy: ~mv* = g|AV|. -
2" = Bou

. . mo

« Radius of trajectory: r = LTB
+ Charge:g=e Deflection region
2

eB?r
Mass: m = W /7\
v

+q

——Acceleration
region

Ion Source
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The mass spectrometer is an indispensable tool in chemistry and chemical
engineering research. It allows for a quick determination of the molecular
mass of reaction products.

The idea behind the mass spectrometer is to launch ionized molecules with
given kinetic energy into a magnetic field directed perpendicular to its path
and measure how that path is being bent into a circle.

Ionizing radiation (e.g. from a radioactive sample) knocks off an electron
from molecules placed into the apparatus. The mass reduction is negligible
because the electron mass is tiny compared the mass of the nuclei.

The positively charged ion is accelerated by the electric field across a potential
difference AV and thus picks up a known amount of kinetic energy.

The ionized molecule thus accelerated then enters a region of magnetic field,
where its path is curves into a semicircle as shown. A battery of detectors
determines the radius r of the path.

The important point is that the radius r is proportional to mwv, not pro-
portional to the kinetic energy, %va, which is the same for all molecules,
irrespective of mass. This has the consequence that molecules with different
masses hit different detectors.

The result worked out on the slide shows that the mass is proportional to
the square of the radius.



Cyclotron

Purpose: accelerate charged particles to high energy.

- Low-energy protons are injected at S.
- Path is bent by magnetic field B.

Constant-frequency
alternating
voltage

« Proton is energized by alternating voltage AV
between Dee; and Dee,.

« Proton picks up energy AK = eAV
during each half cycle.

« Path spirals out as velocity of particle increases:

Radial distance is proportional to velocity: r = %-

- Duration of cycle stays is independent of r or v:

. 2tm
cyclotron period: T = =B

« Cyclotron period is synchronized with alternation of accelerating voltage.

« High-energy protons exit at perimeter of B-field region.
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A promising way of determining the make-up of an elementary particle is to
accelerate it to high speed, smash it against other particles, and see what
happens. That, in a nutshell, is a scattering experiment.

This slide describes how one of the earliest particle accelerator design works:
the cyclotron. It only works for charged particles as do all other designs.

The cyclotron design uses the fact (identified at the end of page 2) that the
period of a particle of mass m and charge e circling in a magnetic field B is
T = 2mm/eB, independent of orbital radius r and particle velocity v.

If a potential difference AV between the D-shaped conductors is established
that alternates with period 7', then among all the particles that circle around
when launched at low velocity, a subset always gets a kick in the rear when
they cross the gap between the Dees.

That kick increases both their speed and the radius of their orbit but not the
period of their orbital motion. When their orbital radius reaches the edge of
the region of magnetic field, the centripetal force stops and the particles fly
off at high speed.

Things are, of course, not quite that simple in a real cyclotron.



Magnetic Bottles :hﬂ%:"'m:u
Moving charged particle Van Allen belt:
confined by trapped protons and electrons
inhomogeneous magnetic field. in Earth’s magnetic field.
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What happens if a charged particle is launched in a uniform magnetic field
B with an initial velocity vy that is, unlike on page 2, not perpendicular to
the field? Let us say we have,

EIBZR, gozvxoi+vyoj+Uzol;.

In that case the particle still moves at constant speed but its path now is a
spiral with axis in z-direction and radius,

muv [ o 9
r=—— v = Vi T V.
B ) z0 20

The particle advances in z-direction with constant v, = v.q.

If the magnetic field is non-uniform in the way shown on the left, the bulge
represents a region of weaker field. As the particle circles around in a vertical
plane, the magnetic force now also has a component parallel to the horizontal
axis, pointing into region of weaker field (toward the bulge).

The particle now spirals back and forth inside the bulge. We effectively have
a magnetic bottle for charged particles.

Such magnetic traps, named van Allen belts, do exist in the Earth’s magnetic
field. Protons and electrons, ejected by the sun as solar wind, get trapped in
different regions due to their different masses.



Loudspeaker minanm

Conversion of electric signal
into mechanical vibration.

Sound carrying music or spoken information travels through air as a superpo-
sition of longitudinal pressure and density waves. In a microphone (electrical
transducer) sound causes a mechanical vibration which is converted into an
electrical signal. When the electrical signal is amplified, the sound can be
recreated in a loudspeaker (mechanical transducer) as shown schematically.

The amplified electrical signal is a current on which the vibrations picked
up by the microphone are encoded as a pattern. The current flows through
a coil attached to a cone and positioned in a magnetic field such that the
magnetic force is either toward the front or the back of the cone.

The magnetic force thus reproduces, on the cone, the vibrational pattern
picked up by the microphone.

The cone, in turn, emits sound waves traveling through the air, carrying the
original music or spoken information.



Intermediate Exam IlI: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the
magnetic field in the yz-plane at 30° from the y-direction.

(a) Find the direction of the magnetic force acting on the particle.
(b) Find the magnitude of the magnetic force acting on the particle.

z

B =4mT

ﬁso" v =3m/s

q=>5nC

y

Solution:

(a) Use the right-hand rule: positive x-direction (front, out of page).
(b) F = quBsin30° = (5 x 107°C)(3m/s)(4 x 1073T)(0.5) = 3 x 10~ !N.
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We conclude this lecture with two simple quantitative applications of mag-
netic force.

We recognize at once that the problem posed on the slide here is an applica-
tion of the magnetic force on a charged particle: F= qu X B.

For part (a) we employ the right-hand rule as explained in the previous
lecture: index to the right and middle finger to the upper right makes the
thumb point out of the plane.

For part (b) we recall how to calculate the magnitude of a vector that is
the result of the cross product between two vectors as also explained in the
previous lecture.

There are plenty of similar problems among the exam 2 slides.
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Intermediate Exam II: Problem #z (Spring '06) O

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude B = 30mT as
shown. The current in the loop is I = 0.4A in the direction indicated.

(a) Find magnitude and direction
of the force F; on side 1 of the triangle. B l

(b) Find magnitude and direction
of the force F, on side 2 of the triangle.

20cm

20cm

Solution:

(a) F; = IL x B = 0 (angle between L and B is 180°).

(b) Fp = ILB = (0.4A)(0.2m)(30 x 1073T) = 2.4 x 1073N.
Direction of F»: @ (into plane).
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This an application of magnetic force on segments of currents: F=ILxB ,
which is readily recognizable. Again, there are many problems among the
exam 2 slides.

The solution of both parts (a) and (b) are straightforward and worked out
on the slide.

Suppose we add a part (c¢) asking ourselves to determine the force on side 3.

The right-hand rule tells us that the direction of force Fy is into the plane,
i.e. opposite in direction to force F5.

For the magnitude of ﬁg we must take into account that side 3 is longer than
side two by a factor v/2 and that the angle between L and B is 45°. Hence
W can write,

Fs = (0.4A)(v/2)(0.2m)(30 x 1073T) sin(45°) = 2.4 x 107°N.
w\[_/
1/V/2

The magnitude of ﬁg is the same as that of ﬁz.

It turns out that the net force on a current loop in a uniform magnetic field
is always zero. That does not mean, as we shall see in the following lecture,
that a free current loop does not respond with motion when positioned in a
constant magnetic field. Zero net force does not mean zero torque.
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Magnetic Force Application (3)
The dashed rectangle marks a region of uniform magnetic field B pointing out of the plane.

- Find the direction of the magnetic force acting on each loop with a ccw current I.

tsligo

This is the quiz for lecture 20.
It is an application of the vector equation F=1IL x B.

Possible answers are either no force or a force directed toward one of the
eight compass points indicated.
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