PHY 204 Lecture 23 ...
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The focus of this page and the next is on charged particles as sources of
electric and magnetic fields.

Here we review a slide from earlier in the course. A point charge ¢ at rest is
the source of a static (i.e. time-independent) electric field E everywhere in
space. The field direction is radial, pointing away from a positive charge (as
shown) and pointing toward a negative charge (not shown).

When a second point charge ¢, is present, it experiences an electric force,
F = qlE exerted by the electric field at its position. If the source of that
field is the charge ¢, then the force can be reinterpreted as a force over
distance between the two point charges.

If the source ¢ is moving, then the expression for the electric field is more
complicated. Expression (2) is still valid, but the field £ in that expression
is different from (1). Therefore, (1+2) is no longer valid.

The complication has to do with the fact that when ¢ starts moving, the
surrounding field does not move rigidly with its source. The news that the
source got moving travels outward at the speed of light, producing a time-
dependent distortion in the field.

A further complication that comes into play is that moving charges also
generate a different field (see next page).



Magnetic Field of a Moving Point Charge Oy
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(2) Force F; exerted by field B on point charge q;: Fi = qi9; x B

(1) Magnetic field B generated by point charge g: B =

(1+2) There is a time delay between causally related events over distance.
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Consider a point charge ¢ moving with constant velocity ¢ as shown on
the slide. It generates a magnetic field B with magnitude and direction as
captured by expression (1) on the slide.

Unlike a static electric field, the magnetic field is not radial. Its direction is
the result of a cross product involving the velocity v of the source and the
distance vector 7 from source point to field point as factors. The product
vector is perpendicular to the plane spanned by these two vectors.

In the graph, the two factor vectors are in the vertical plane. The cross
product is perpendicular to that plane. The right-hand rule tells you that
the field B is out of the plane. If ¢ were negative, B at the same position
would be into the plane. Recall that 7 = 7/r is a unit vector in the direction
of 7.

Take note of and get familiar with the permeability constant pgy. Its role in
magnetism is similar to the role of the permittivity constant €, in electrostat-
ics. In electrodynamics, their roles become entangled, for example, in the
speed of light,

= 299792458...m /5.
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Keep in mind that we are dealing with a dynamic situation. As the source
moves on, the vector 7 changes unless we move the field point along. The
usefulness of expression (1) is quite limited for that reason.

If you place a second point charge ¢; into a magnetic field B , it experiences
a magnetic force as expressed in (2). The validity of this expression is more
general than (1). The two expressions can only be combined if time delays
between cause and effect are accounted for.



Maghnetic Field Application (1)
A particle with charge g = 4.5nC is moving with velocity 7 = 3 x 10°m/si.
Find the magnetic field generated at the origin of the coordinate system.

« Position of field point relative to particle: 7 = 4mi — 3mj
« Distance between Particle and field point: r = \/(4m)2 + (3m)? = 5m
-+ Magnetic field:
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Here we have a simple quantitative application of the source expression intro-
duced on the previous page. The source point is the instantaneous position
of the moving particle and the field point has been chosen to be at the origin
of the coordinate system. The vector 7 marks the field point relative to the
source point.

Note that the first expression for the magnetic field as taken from the previous
page is rewritten in the second expression by substituting the definition,
7 = 7/r, of the unit vector. The second expression is often more practical.

Confirm, using the right-hand rule, that the direction of B is into the plane,
just as the calculation, which uses components, predicts.

In preparation of what is waiting for us on the next page, we extract from
the first expression for B an expression for its magnitude:
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Law of Biot and Savart IO
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+ Magnetic field generated by current of arbitrary shape:

« Vector relation: dB =

- 1ds x 7
B= % / % (Law of Biot and Savart)
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Whereas the motion of individual charged particles always produce magnetic
fields that are necessarily time-dependent, it is possible to a produce static
magnetic field by steady electric currents.

A steady current is produced by a steady stream of mobile charge carriers in-
side a conductor. While each charge carrier produces a time-dependent mag-
netic field at every field point, the current averages out this time-dependence
into a static field.

The collective motion of charge carriers inside a short conductor segment
can be expressed as the collective charge dg moving at drift velocity v or,
alternatively, as a current [ flowing in the directed segment ds.

This equivalence allows us to transcribe the expression for the magnetic-field
magnitude from the previous page to the one shown in the second line on
the slide of this page.

The associated vector expression is recovered in the third line. It expresses
the static field generated by a segment ds of steady current I a distance r
away from the field point.

Calculating the magnetic field B originating from a steady current of arbi-
trary shape at a field point of choice then amounts to a summation over
infinitesimal segments ds, converted into the integral as shown on the slide.
This expression is known as the law of Biot and Savart.

In the following, we apply this expression for selected applications that are
not too challenging mathematically.



Magnetic Field of Circular Current T

. . . _ Mo Id¢
Law of Biot and Savart: dB = IR
R

V2% +R?
_ ol Rdl
== (22 + R2)3/2
X _ LUI R /ZnR ‘
B, = 4 (2 4+R2)372 Jo at
_ pol R?

= B.="- @R

* dB, = dBsinf = dB

_ ol

« Field at center of ring (z = 0): B. 3R

+ Magnetic moment: y = InR?
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+ Field at large distance (z > R) o

Here we consider a current flowing around a circle placed in the xy-plane
with the center at the origin of the coordinate system. For field points that
lie on the z-axis the calculation is quite manageable.

A key simplification is achieved if we split the magnetic field dB generated
by each segment into components dB, parallel to the z-axis and a vector
dB, perpendicular to it. The latter (named dB, on the slide) averages out
to zero when we sum contribution from segments around the circle.

The integral of dB, is very simple and performed on the slide. The magnetic
field B is always pointing in the positive z-direction. When we say that, we
must also say that the current flows in the direction shown. If I flows in the
opposite direction, then B switches direction as well.

Note that the expression for the magnetic field simplifies a great deal if we
choose the field point at the center of the circle (z = 0).

Recall the magnetic dipole moment of a circular current loop. The direction
of i for the case shown is in the positive z-direction. We have previously
learned to use the right-hand rule for that determination.

For a magnetic dipole aligned with the z-axis and positioned at its origin,
the magnetic field a large distance away on z-axis then only depends on
the dipole moment as shown. A corresponding expression introduced earlier
exists for electric dipole moments.



Magnetic Field Application (11) T

The electric field E, along the axis of a charged ring and the magnetic field B, along the axis of a circular
current loop are
o Q X oyl R
7 4mey (x2 +R2)3/2" A (x2 + R2)3/2
(a) Simplify both expressions for x = 0.
(b) Simplify both expressions for x >> R.
(c) Sketch graphs of E,(x) and By(x).

Ex By

Consider two ring of radius R, each positioned such that the z-axis goes right
through its center and is perpendicular to its plane.

The two expressions side by side represent (on the left) the electric field
generated by a charged ring and (on the right) the magnetic field generated
by a circular current, in both case for field point on the z-axis.

The two expressions look similar at first glance. One features the permeabil-
ity constant, the other the permeability constant. However, understanding
the differences is important.

When we graph the two functions, we see key differences at once.

Ex By

The electric field changes direction from left to right, whereas the magnetic
field always points to the right.
. ,u()l

At the center of the ring, we have E, =0, B, = SR

At large distances, x > R, the the electric field approaches zero more slowly
than the magnetic field. Viewed from far, the charged ring is an electric
monopole, whereas the current ring is a magnetic dipole.

Q piol R?
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Magnetic Field Generated by Current in Straight Wire (1) T

Consider a field point P that is a distance R from the ax
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- Length of wire: L = R(tan6, — tan6,)

Wire of infinite length: 6; = —90°, 6, =90° = B =

The goal here is to construct a practical expression for the magnetic field
generated by finite but not infinitesimal, straight and thin segment of steady
current. Such segments do, of course, not exist in isolation, but many currents
of practical relevance can be assembled out of such segments linked together.

The expression that comes out of the (somewhat lengthy) derivation sketched
on the slide is shown on the fourth bullet line. It contains the two angles 6,
0, and the distance R.

If we wish to use this expression in an application, we must introduce a
coordinate system such that the current segment lies along the z-axis and
the field point lies on the y-axis. The distance between the field point and
the z-axis is R. The line between the field point and the front (rear) end of
current segment is at angle 6 (6;) from the y-axis.

If, on the graph shown, we move the field point to the right, then the two
angles gradually decrease and go negative, first 6; and then 6,. The direction
of B is ® when the current flows to the right as shown. Switching the current
direction from — to <~ causes B to switch from ® to ®.

When we consider a situation where the field point is close to a wire, then
both angles are close to right angles with opposite sign as indicated in the
last line of the slide. The magnetic field is then well approximated by that of
an infinitely long straight current. The expression for the magnitude of the
current now has a very simple structure and depends only on the distance of
the field point from the line of current.



Magnetic Field Generated by Current in Straight Wire (2)

Consider a current I in a straight wire of infinite length.

» The magnetic field lines are concentric circles
in planes prependicular to the wire.
« The magnitude of the magnetic field at distance R
.o I
from the center of the wire is B = 12
2nR
» The magnetic field strength is
proportional to the current I and
inversely proportional to the distance R
from the center of the wire. C >
- The magnetic field vector is tangential
to the circular field lines and directed
according to the right-hand rule.
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Here we take a closer look at determining the direction of the magnetic field
generated by a current in a wire of any shape.

We begin with a long straight wire carrying a current flowing 1 as shown. The
vector B must then be tangential to the circular line shown. The right-hand
rule identifies the direction.

The circular line can is a magnetic-field lines. All magnetic field lines are
closed (for reasons explained shortly).

We can apply the right-hand rule to currents in wires of any shape. For
example, if we wrap the fingers of our right hand around any part of the
circle shown on page 5 with the thumb in current direction, we conclude that
the magnetic field points to the right inside the circle and to the left outside
the circle. This remains true for any point in the plane of the circle.



Maghnetic Field Generated by Current in Straight Wire (3) Oy

Consider the magnetic field B in the limit R — 0.
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Here we return to a straight segment of current of finite length and investigate
what happens when we reduce the distance R of the field point from the line
of current toward zero such that it approaches the line to the side of the
current segment as shown on the slide.

In this case, both the numerator and the denominator of the expression in the
first bullet line approach zero, which leaves us guessing whether the strength
of B goes to infinity or to zero or whether it approaches a finite value.

A closer examination of this question requires that we expand the angles in
powers of R/a as is done on the slide. Mathematically speaking, this is a
binomial expansion. The answer is that the the field strength B approaches
Zero.

This result is important to know in many applications.

Note that if we made R smaller and smaller at a location halfway between
the front and rear ends of the segment, then only the numerator approaches
zero, which makes the field strength approach a very large value when the
distance reaches the surface of a very thin wire.

What the magnetic field is inside the wire, will be a topic of investigation for
which we use a different method of analysis (stay tuned).



Maghnetic Field at Center of Square-Shaped Wire Ty

Consider a current-carrying wire bent into the shape of a square with side 2a.

Find direction and magnitude of the magnetic field generated at the center of the square.
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What is the magnetic field B at the center of a current-carrying wire shaped
into a square of side 2a?

Let us determine first the direction, which is ® as indicated. To confirm
that, we apply the right-hand rule using any one of the four sides.

When we determine the strength (magnitude) of B we think of the square
as four segments of equal length 2a linked together. Let us begin with the
bottom side. The angles are #; = 45° and 6; = —45° and the relevant distance
to the field point is a. Then we realize that each segment contributes equally.
The result is shown on the slide.

10



Magnetic Field Application (6) Ty

A current-carrying wire is bent into two semi-infinite straight segments at right angles.

(a) Find the direction (©, ®) of the magnetic fields By, ..., Bg.
(b) Name the strongest and the weakest fields among them.
(c) Name all pairs of fields that have equal strength.

oLl o 4
Bg Bs By

A smart way to analyze this situation is to consider two types of current
segments:

e A semi-infinite current with the field point a distance L away from
the edge such Bj from the horizontal green line. The field strength
associated with this configuration is

pol
By = —.
4L
e A segment of length L such as the horizontal green line inside the big

dashed square with the field point positioned as Bg or Bs. The field
strength associated with such a configuration is

ol 1
YN

Next we declare that any field out of the page (®) is counted positively and
any field pointing into the page (®) negatively.

Now we assemble all current configurations viewed from the six field points
from the two pieces analyzed above with the appropriate signs. The results
should like as follows:

1 1
Bi=-By |1+ —+1+—| ~-34B,,
e AR

1 1

By=DBs=DB, |1+ ——1+—| ~14B,,
== B[t J5 o1
B3 = Bs = B,

1 1
B4:Bs{1——+1——}20.683.

V2 V2
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Magnetic Field Application (5) Oy

If the current I in (a) generates a magnetic field By = 1T pointing out of the plane

- find magnitude and direction of the fields By, By, B3 generated by I in (b),
« find magnitude and direction of the fields By, Bs, Bs generated by I in (c).

(a) (b) (©
Qo I o
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This is the quiz for lecture 23.

Consider the current segment shown in configuration (a). We know that
the field By is pointing ® and are told that its strength is 1T. The field at
the upper right corner of the same configuration would be exactly the same
for symmetry reason. This is readily verified by changing the angles in the
general expression, ,
Ho

b= AT R
For the field point marked, the angles are 6, = 45°, #; = 0 whereas for the
field point at the upper right corner they are 5 = 0, §; = —45°. Replacing
both angles leaves the result invariant.

(sin 92 — sin 01) .

With this information in hand, find direction and magnitude of the magnetic
field at point 1 though 6 in configurations (b) and (c). The possible answers
for direction are ® and ® and for magnitude an integer number in units of
Tesla.
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