
PHY204 Lecture 24 [rln24]

Force Between Parallel Lines of Electric Charge
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We begin this lecture by examining some consequences of the laws of elec-
tricity and magnetism introduced earlier. The conclusions will force us to
rethink the concept of motion in space.

We begin by considering two very long, thin, parallel rods, a distance d apart
and both uniformly charged. The charge densities λa and λb are positive,
which causes the rods to experience a repulsive interaction force.

We calculate the force per unit length exerted by rod a on rod b in two steps.
The second line on the slide reproduces the result from early in the course
for the electric field Ea generated by rod a at radius d from it. The electric
field Ea has the direction shown: away from the positively charged rod a.

The third line is the electric force experienced by a segment of length L on
rod b due to the electric field Ea generated by rod a.

When we combine the results from lines 2 and 3, we obtain, on the fourth
line, an expression for the repulsive electric force per unit length between the
two rods.

This simple result is far less innocent than might be apparent. It is a result
of electrostatics, meaning that the charged rods are at rest. At rest relative
to each other, certainly. At rest relative to what else? The observer who
measures the force?
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Force Between Parallel Lines of Electric Current

• Electric currents: Ia, Ib

• Magnetic field generated by line a: Ba =
µ0

2π

Ia

d
• Magnetic force on segment of line b: Fab = IbLBa

• Magnetic force per unit length (attractive): Fab
L

=
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2π
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d
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F
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Next we consider two very long, thin, parallel, conducting rods, a distance
d apart, both carrying currents. The currents Ia and Ib flow in the same
direction, which causes the rods to experience an attractive interaction force.

We again calculate the force per unit length exerted by rod a on rod b in two
steps. The second line reproduces the result from lecture 23 for the magnetic
field Ba in the direction shown generated by rod at radius d.

The third line is the magnetic force on a segment of length L on rod b due
to the electric field generated by rod a.

When we combine the results from lines 2 and 3, we obtain, on the fourth
line, an expression for the attractive magnetic force per unit length between
the two rods.

If we replace the conducting rods, which are electrically neutral, by the
charged rods from the previous page and have them move at constant veloc-
ity v in the direction of the arrows, the moving charges represent currents
Ia = λav and Ib = λbv, respectively, in the two rods. Now the repulsive
electrical force is weakened by an attractive magnetic force:

Fab

L
=

1

2πε0

λaλb
d
− µ0

2π

(λav)(λbv)

d
.

Consider two charged rails at rest and a jogger running at velocity −v relative
to them. In the coordinate system where the rods are at rest, only the
electrical force is present, but in the coordinate system where the jogger is
at rest, the rods move with velocity v and both forces are present.

The net force between the rods, a measurable quantity, is different depending
on whether the rails move or the jogger moves. Can that be? It would imply
that we can measure absolute motion. If we deny this possibility, as Einstein
did more than a century ago, something has to give.
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Is There Absolute Motion?
Forces between two long, parallel, charged rods

v
F

B

λ   > 0

λ   > 0

∗
1

∗
2

I   = v λ
∗
11

2I   = v 
∗

λ
2

F
E

∗
F

E

λ   > 01

λ   > 02

d

in uniform motionat rest

• FE

L
=

1
2πε0

λ1λ2

d
(left), F∗E

L
=

1
2πε0

λ∗1 λ∗2
d

, FB

L
=

µ0

2π

I1I2

d
, (right)

• F∗E − FB

L
=

1
2πε0

λ∗1 λ∗2
d

(
1− v2

c2

)
=

1
2πε0

λ1λ2

d

• c =
1√

ε0µ0
= 2.998× 108ms−1 (speed of light)

• λ∗1 =
λ1√
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, λ∗2 =

λ2√
1− v2/c2

(due to length contraction)
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What has to give (among other things) is the concept of absolute space,
which takes for granted the existence of rigid measuring sticks.

If we insist that the force between the two rods is the same as measured by
the first observer, who sees them at rest, and by the second observer, who
sees them in motion, we must allow the rails to contract in length when seen
in motion. The contraction increases the charge per unit length from λ1 and
λ2 to λ∗1 and λ∗2, respectively.

The first item on the slide gives (on the left) the electric force FE/L measured
by an observer who sees the rails at rest. It also gives (on the right) the
electric force FE/L and the magnetic force FB/L measured by an observer
who sees the two rails in motion.

In the magnetic force, we use I1 = λ1v, I2 = λ2v and the substitution
µ0 = 1/(ε0c

2), where c is the speed of light (see third item). This brings the
combined force into the form shown on the second item.

If we equate the combined force (measured by the second observer) with
electric force (measured by the first observer), we find the change in the
charge densities as given in the last item.

Augmented charge densities arise when the same charge is spread over shorter
distances. The length contraction as seen by the second observer,

∆l∗ = ∆l

√
1− v2

c2
,

does not amount to much unless the velocity v is a significant fraction of
the speed of light c. However, length contraction is a universal phenomenon
(one of several) to which objects seen in motion are subjected to. Another
universal phenomenon is the speed limit, v < c, for objects with mass, which
we will discuss in the last lecture of this course.
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Magnetic Field Application (12)

Consider two infinitely long straight currents I1 and I2 as shown.

• Find the components Bx and By of the magnetic field at the origin of the coordinate system.
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Returning to quantitative applications of magnetic-field calculations for sim-
ple configurations, we consider, on this page and the next, two very long
straight wires oriented perpendicular to the xy-plane.

We see that both currents I1 and I2 are directed into the plane. At a generic
point in the xy-plane, each current generates a magnetic field with x- and
y-components, but no z-component. This much we can tell up front.

At the origin of the coordinate system, the magnetic field generated by cur-
rent I1 is vertical and pointing ↑. At the same location, the magnetic field
generated by current I2 is horizontal and pointing ←. We draw these con-
clusions by employing the right-hand rule with our thum pointing in current
direction, which is into the page.

Each of the two Cartesian magnetic-field components Bx and By are thus
generated by only one current, the former by I2 and the latter by I1.

With the expression for the magnetic field generated by a long straight cur-
rent at our fingertips, we can write,

Bx = −µ0

2π

4A

3m
= −2.67× 10−7T, By =

µ0

2π

2A

4m
= 1.00× 10−7T.

The magnetic field ~B = Bx î +By ĵ is directed left and up.
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Magnetic Field Application (13)

Two straight electric currents I1 and I2 of infinite length directed perpendicular to the xy-plane generate a
magnetic field of magnitude B = 6.4× 10−7T in the direction shown.

• Find the magnitude and direction (�,⊗) of each current.
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Here is the reverse of the application from the previous page. The orientation
of the two wires and their positions in the xy-plane are the same. However,
we do not know the two currents I1 and I2, not even if they are directed in
(�) or out (⊗).

We know instead the magnitude and direction of the magnetic field B the
two currents generate in combination at the origin of the coordinate system.
The direction must be in the xy-plane. We can write ~B = Bx î +By ĵ.

Just as on the previous page, current I1 only produces a vertical magnetic
field and current I2 only a horizontal field at the field point.

Hence we can write,

Bx = B cos 55◦ = 3.67× 10−7T =
µ0

2π

I2
3m

,

By = 5.24× 10−7T = B sin 55◦ =
µ0

2π

I1
4m

.

The two equations are readily solved for the unknown currents I2 and I1.

The two current direction are determined by the right-hand rule. Curl the
fingers of your right hand around circle marked I2 such that they point to
the right at the field point. Your thumb will point out of the page.

Then curl the fingers of your right hand around circle marked I1 such that
they point up at the field point. Your thumb will point into the page.

Thus confirm the final results,

I2 = 5.51A �, I1 = 10.5A ⊗ .
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Unit Exam III: Problem #1 (Spring ’08)

Consider two circular currents I1 = 3A at radius r1 = 2m and I2 = 5A at radius r2 = 4m in the directions shown.

(a) Find magnitude B and direction (�,⊗) of the resultant magnetic field at the center.

(b) Find magnitude µ and direction (�,⊗) of the magnetic dipole moment generated by the two currents.

r

r

I

I

1

1

2

2

Solution:

(a) B =
µ0(3A)

2(2m)
− µ0(5A)

2(4m)
= (9.42− 7.85)× 10−7T

⇒ B = 1.57× 10−7T ⊗
(b) µ = π(4m)2(5A)− π(2m)2(3A) = (251− 38)Am2

⇒ µ = 213Am2 �
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You have seen this slide before two lectures ago. We were ready to solve part
(b) then. Now we are ready to also solve part (a).

In the previous lecture we have calculated the magnetic field generated by a
current I along a circular wire of radius R, using the law of Biot and Savart.
The magnitude of the field at the center of the circle is,

B =
µ0I

2R
.

The direction is perpendicular to the plane, out of the page (�) if the current
is counterclockwise (ccw) and into the page (⊗) if it is clockwise (cw).

In this application we have two circular currents in opposite direction, I1 cw
and I2 ccw. In consequence, the two fields have opposite direction as well,
~B1 ⊗ and ~B2 �.

It turns out that ~B1 is stronger than ~B2, implying that the resultant field is
directed ⊗.

On the slide, ⊗ is (tacitly) declared to be the positive direction for part (a).
The result is independent of that convention.
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Intermediate Exam III: Problem #1 (Spring ’06)

Consider two infinitely long, straight wires with currents of equal magnitude Ia = Ib = 5A in the directions 
shown.
Find the direction (in/out) and the magnitude of the magnetic fields B1 and B2 at the points marked in the 
graph.

2m 2m

2
m

2
m

I
a

I b

B
2

B1

Solution:

• B1 =
µ0

2π

(
5A
4m
− 5A

4m

)
= 0 (no direction).

• B2 =
µ0

2π

(
5A
2m
− 5A

4m

)
= 0.25µT (out of plane).
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In this application, we have two very long wires, perpendicular to each other
and positioned in the plane of the paper as shown. Both wires carry a current
of 5A in the directions shown.

We know from earlier that the direction of magnetic field generated by any
current that flows in the plane of the page has to be perpendicular to that
plane, either � (out) or ⊗ (in). We use the right-hand rule to determine
which is the case. The current Ia generates a field in (⊗) to its right. The
current Ib generates a field out (�) above it.

For a long, thin, and straight wire the strength of the magnetic field is

B =
µ0I

2πr
,

where r is the distance of the field point from the wire.

With this information, it is straightforward to determine the fields ~B1 and
~B2 generated by the combination of two currents. The results are worked
out on the slide.
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Intermediate Exam III: Problem #1 (Spring ’05)

An infinitely long straight current of magnitude I = 6A is directed into the plane (⊗) and located a distance
d = 0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic field ~B generated by this
current is in the negative y-direction as shown.

(a) Find the magnitude B of the magnetic field.
(b) Mark the location of the position of the current ⊗ on the dashed circle.

y

x
B

0.4mSolution:

(a) B =
µ0

2π

I
d
= 3µT.

(b) Position of current ⊗ is at y = 0, x = −0.4m.
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This is an even simpler application of a long, thin, and straight wire carrying
a current.

In part (a) we reason forward using the relevant distance d between current
and field point.

In part (b) we reason backward using the right-hand rule.
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Unit Exam III: Problem #2 (Spring ’09)
Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter circle, or
half circle of radius R = 1m in four different configurations. A current I = 1A flows in the directions shown.
Find magnitude Ba, Bb, Bc, Bd and direction (�/⊗) of the magnetic field thus generated at the points a, b, c, d.

I

d

I

I

a

b

I

c

Solution:

Ba =

∣∣∣∣
µ0I

4πR
+

µ0I
2R

+
µ0I

4πR

∣∣∣∣ = |100nT + 628nT + 100nT| = 828nT ⊗

Bb =

∣∣∣∣
µ0I

4πR
+

µ0I
4R
− µ0I

4πR

∣∣∣∣ = |100nT + 314nT− 100nT| = 314nT ⊗

Bc =

∣∣∣∣
µ0I

4πR
+

µ0I
8R

+ 0
∣∣∣∣ = |100nT + 157nT| = 257nT ⊗

Bd =

∣∣∣∣
µ0I

4πR
− µ0I

2R
+

µ0I
4πR

∣∣∣∣ = |100nT− 628nT + 100nT| = 428nT �
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From earlier we know that a thin wire bent into a circle of radius R generates
a magnetic field B◦ at its center and a very long, thin straight wire generates
a magnetic field B| a distance r from it if the wires carry a current I:

B◦ =
µ0I

2R
, B| =

µ0I

2πr
.

In the application on this slide, we see infinite and semi-infinite wires, as well
as wires bent into full circles, half circles and quarter circles.

When we go back and examine our derivations of the above expressions via
the law of Biot and Savart we realize at once that the field generated by a
semi-infinite portion is just half the field generated by the infinitely long wire.
Likewise, a semicircle generates half the field of a full circle at the center and
a quarter circle generates a half the field of the semicircle.

With this knowledge we can construct the field at points a through d from
the parts that contribute. We must heed the fact though that some parts
contribute fields out and other parts fields in. The right-hand rule applies to
each part.

The convention used in the solution shown is that fields in are counted pos-
itively and fields out negatively.
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Magnetic Field Application (14)

Consider two pairs of rectangular electric currents flowing in the directions indicated.

(a) What is the direction (→,←) of the magnetic force experienced by the black rectangle in each case?
(b) Which black rectangle experiences the stronger magnetic force?

(1) (2)

tsl238

We know from earlier that wires carrying currents in the same direction exert
an attractive force on each other and wires carrying currents in opposite
direction a repulsive force.

We also know that the force is inversely proportional to the distance between
two current-carrying wires.

In this application, we only consider the forces exerted by the long sides of
the green rectangle on the long sides of the black rectangle. There are four
such forces in each configuration.

Let us name the magnitude of force between closest sides in each configura-
tion F0. All other distances are either the same or multiples of that distance.

Furthermore, let us count forces to the right (→) positively and forces to the
left (←) negatively.

With these conventions in place, the net force on the black rectangle in two
configurations becomes,

F1 = F0

(
−1 +

1

3
+

1

3
− 1

5

)
' −0.53F0 ←

F2 = F0

(
1 + 1 + 1− 1

3

)
' 2.7F0 →

Note that not all attractive (or repulsive) forces are in the same direction.
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Magnetic Field Application (9)

Two wires of infinite length contain concentric semicircular segments of radii 1m and 2m, respectively.

• If one of the wires carries a 6A current in the direction indicated, what must be the direction (↑, ↓) and
magnitude of the current in the other wire such that the magnetic field at the center of the semicircles
vanishes?

6A 6A

(a) (b)
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The magnetic field at the center of a circular current I of radius R is

Bc =
µ0I

2R
,

directed perpendicular to the plane of the circle in a direction dictated by
the right-hand rule.

The 6A semicircular current shown in parts (a) and (b) thus generates a
magnetic field 1

2
Bc directed into the page (⊗).

In part (a) this magnetic field must be compensated by a semi circular current
looping around the same field point on the opposite side with half the radius.
A semicircle with half the radius produces the same magnetic field if the half
the current flows. If a 3A current flows up (↑) through the small semicircle,
then it produces a magnetic field 1

2
Bc directed out of the page (�).

In part (b) the same magnetic field generated by the large semicircle must be
compensated by a semicircular current looping around the same field point
on the same side with half the radius. A magnetic field of equal magnitude
at half radius again requires half the current. If a 3A current flows down (↓)
through the small semicircle, then it produces a magnetic field 1

2
Bc directed

out of the page (�).

The problem statement obscures a simpler way of looking at the situation.
The current in the larger semicircle is clockwise. Hence the current in the
smaller semicircle must be counterclockwise to have a compensating effect.
That holds for both parts (a) and (b).
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Magnetic Field Application (2)

The currents I1, I2 in two long straight wires have equal magnitude and generate a magnetic field ~B as shown
at three points in space.

• Find the directions (
⊙

,
⊗
) for I1, I2 in configurations (a) and (b).

I I21
I I21

(b)(a)
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This is the quiz for lecture 24.

Recall the right-hand rule for the magnetic field direction around long, straight
currents.

Recall that the strength of magnetic field weakens with distance from the
current.
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