
PHY204 Lecture 25 [rln25]

Gauss’s Law for Electric Field

The net electric flux ΦE through any closed surface is equal to the net charge Qin inside divided by the
permittivity constant ε0:

∮
~E · d~A = 4πkQin =

Qin

ε0
i.e. ΦE =

Qin

ε0
with ε0 = 8.854 × 10−12C2N−1m−2

The closed surface can be real or fictitious. It is called “Gaussian surface”.
The symbol

∮
denotes an integral over a closed surface in this context.

• Gauss’s law is a general relation between
electric charge and electric field.

• In electrostatics: Gauss’s law is equivalent
to Coulomb’s law.

• Gauss’s law is one of four Maxwell’s
equations that govern cause and effect in
electricity and magnetism.
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We begin this lecture by reviewing one Maxwell equation (Gauss’s law for
the electric field) and then continue on the next two pages by introducing a
second Maxwell equation (Gauss’s law for the magnetic field) plus a restricted
version of a third Maxwell equation (Amper̀e’s law).

The fourth Maxwell equation (Faraday’s law) will be introduced later, in
lecture 27. The full set of Maxwell’s equations including the general version
of Ampère’s law will be presented in lecture 35.

Recall the nature of electric flux. It is not a vector. electric flux is constructed
from dot products, ~E · d ~A of the electric-field vector and an element-of-area
vector.

Gauss’s law for the electric field states a relationship between the electric
flux through a closed surface of our choice and the net electric charge inside.
The area vectors d ~A always point toward the outside of a closed surface.
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Gauss’s Law for Magnetic Field

The net magnetic flux ΦB through any closed surface is equal to zero:
∮
~B · d~A = 0.

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how the (closed)
Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss’s laws for the electric and magnetic fields in the context of an electric
dipole (left) and a magnetic dipole (right).
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Gauss’s law for the magnetic field states a corresponding relationship but
magnetic charges (monopoles) have never been found. Presumably they do
not exist (like unicorns). Therefore, the magnetic flux through a closed
surface always vanishes.

We denote magnetic flux by the symbol ΦB to distinguish it from the electric
flux ΦE. Magnetic flux through open surfaces plays an important part in
what comes later (magnetic induction).

All magnetic field lines such as those shown on the lower right of the slide
are always closed in themselves. In this instance, the source of the magnetic
field is a magnetic dipole in the form of a current ring.

The electric field lines associated with an electric dipole, as shown on the
lower left, behave differently. They begin at the positive charge and end at
the negative charge.

Not all electric field lines begin or end in electric charges. There are electric
field lines that close in themselves as do all magnetic field lines. We will first
encounter such electric field lines in the context of Faraday’s law (lecture 27).
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Ampère’s Law (Restricted Version)

The circulation integral of the magnetic field ~B around any closed curve (loop) C is equal to the net electric
current IC flowing through the loop:

∮
~B · d~̀ = µ0IC, with µ0 = 4π × 10−7Tm/A

The symbol
∮

denotes an integral over a closed curve in this context.
Note: Only the component of ~B tangential to the loop contributes to the integral.

The positive current direction through the loop is determined by the right-hand rule.
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The integral
∮
~B ·d ~A in Gauss’s law and the integral

∮
~B ·d~l in Ampère’s law

may look similar in symbolic notation, but they mean very different things.

The former is an integral over a closed surface and the latter over a closed line
(a loop). In the former case, the vector d ~A is perpendicular to the surface,

in the latter case, the vector d~l is tangential to the loop.

Ampère’s law states a relationship between the loop integral and the net
electric current that flows through the loop.

Just as electric charges inside Gaussian surfaces can be positive or negative,
there are positive and negative currents flowing through the loop. Which
is which is determined by yet another rendition of the right-hand rule as
illustrated on the slide.

Curl the fingers of your right hand in the direction of the loop integration,
then any current that flows in the direction of your thumb must be counted
positively and all currents that flow in the opposite direction must be counted
negatively.

In what sense is this version of Ampère’s law restricted? The full version has a
second term on the right-hand side, associated with time-varying phenomena,
as we shall see later. The restricted version is valid for steady currents and
static fields.

Note that Ampère’s law works both ways, just as Gauss’s law does. We can
use it for the calculation of the magnetic field generated a specific current
configuration or for determining the current flowing through a conductor
surrounded by a known magnetic field.
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Ampère’s Law: Application (1)

The line integrals
∮
~B · d~s along the three Amperian loops are as indicated.

• Find the direction (
⊙

,
⊗
) and the magnitude of the currents I1, I2, I3.

I1 I 2

I 3

µ0

µ0

µ 0

(2Α)

(3Α)

(4Α)
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Here we consider the magnetic field generated by three unknown currents
I1, I2, I3 flowing perpendicular to the page. This magnetic field has been
mapped out experimentally for points on the plane of the page.

Using these magnetic-field data, we calculate loop integrals,
∮
~B · d~s, for the

three loops shown. The result of each integral is a number in units Tesla
meter [Tm], which we conveniently write as a product of a current [A] and
the permeability constant [Tm/A].

We now use Ampère’s law to determine the three currents. Note that all three
loop integrals have been carried out in counterclockwise direction, implying
that currents directed out of the page (�) are counted positively and currents
directed into the page (⊗) are counted negatively.

Relating loop integral to currents flowing through the loop thus yields three
linear equations,

I1 + I2 + I3 = 3A, I1 + I2 = 2A, I1 + I3 = 4A.

The first equation pertains to the big loop that envelops all three currents.
We have three equations for three unknowns. They are readily worked out.
The solution reads,

I1 = 3A, I2 = −1A, I3 = 1A.

The negative I2 means that −1A is flowing out of the page or, equivalently,
that +1A is flowing into the page.
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Ampère’s Law: Magnetic Field Inside a Long Solenoid

Apply Ampère’s law,
∮
~B · d~̀ = µ0IC, to the rectangular Amperian loop shown.

• Magnetic field inside: strong, uniform, directed along axis.
• Magnetic field outside: negligibly weak.
• Number of turns per unit length: n.
• Total current through Amperian loop: IC = nIa (I is the current in the wire).
• Ampère’s law applied to rectangular loop: Ba = µ0nIa.
• Magnetic field inside: B = µ0nI.
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The magnetic field inside a very long solenoid is strong and uniform. It is
very weak on the outside except near the ends of the coil. If we wish to
calculate the strength of ~B inside the solenoid, Ampère’s law provides the
quickest answer.

The slide shows a cut through the solenoid along its axis. The current I in
the tightly wound wire is directed out of the page on top and into the page
at the bottom. This produces, according the the right-hand rule applied to
one nearly circular turn of wire, a magnetic field directed from left to right
inside the solenoid.

In order to evaluate the left-hand side of Ampère’s law we must pick a loop
around which we integrate ~B · d~l. We pick the dashed rectangle shown and
integrate counterclockwise around it. The horizontal side on top does not
contribute because there is no magnetic field. The two vertical sides do not
contribute because there is either no field or ~B is perpendicular to d~l. The
contribution from the horizontal side inside the solenoid is Ba.

For the right-hand side of Ampère’s law we need to know the net current
that flows through the loop. One specification of a solenoid is the number n
of turns of wire per unit length. Each turn inside the rectangle contributes
a positive current I to IC . The number of turns inside the rectangle is na.

Ampère’s law for the rectangular loop is stated as the fifth item on the slide.
It can be solved for the unknown magnetic-field strength B as is done in the
last item. Note that the result remains the same if the rectangle is moved
up or down a bit or left and right, thus confirming that the field inside is
uniform.
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Magnetic Field on the Axis of a Solenoid

• Number of turns per unit length: n = N/L

• Current circulating in ring of width dx′ : nIdx′

• Magnetic field on axis of ring: dBx =
µ0(nIdx′)

2
R2

[(x− x′)2 + R2]3/2

• Magnetic field on axis of solenoid:

Bx =
µ0nI

2
R2
∫ x2

x1

dx′

[(x− x′)2 + R2]3/2 =
µ0nI

2

(
x− x1√

(x− x1)2 + R2
− x− x2√

(x− x2)2 + R2

)
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If we wish to calculate the field inside a solenoid of finite length, we can do
that by applying the law of Biot and Savart from lecture 23. We limit our
goal to calculating the field at points on the axis of the coil (the x-axis).

We use the result from page 5 in lecture 23 for a circular current and apply
it to an infinitesimally short segment of solenoid. Then we add up the con-
tributions, which amounts to an integration from one end to the other end
of the solenoid.

The result looks complicated. It is a function of x, which is the field point
on the axis. The coordinates x1, x2 mark the ends of the solenoid.

The graph on the lower right shows how the field strength various along the
axis of the solenoid. Its maximum value is at the center between the two
ends. At either end, the field becomes weaker quickly.

If we make the solenoid longer and longer, then B inside varies less and less.
The curve becomes flatter and flatter. The nearly uniform field approaches
the value B = µ0nI. This is the value found on the previous page by a
different method for an infinitely long solenoid.
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Ampère’s Law: Magnetic Field Inside a Toroid

Apply Ampère’s law,
∮
~B · d~̀ = µ0IC, to the circular Amperian loop shown.

• Magnetic field inside: directed tangentially with magnitude depending on R only.
• Magnetic field outside: negligibly weak.
• Number of turns: N.
• Total current through Amperian loop: IC = NI (I is the current in the wire).
• Ampère’s law applied to circular loop: B(2πR) = µ0NI.

• Magnetic field inside: B =
µ0NI
2πR

.
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When we bend a solenoid into a circle such that the two ends meet, we
have what is called a toroid. This configuration avoids the stray magnetic
fields that are present at the ends of the solenoid. The magnetic field is now
completely contained but it is no longer uniform.

The magnetic field lines are now circles inside the turns of the wire. The
dashed circle is one field line. The direction of the field depends on the
direction of the current sent through the turns wound around the toroid.

Calculating the strength of the magnetic field at radius R from the center
of the toroid is another simple application of Ampère’s law. In this case we
choose the circular loop along the dashed field line in magnetic-field direction.

The last item on the slide states the the dependence of the magnetic-field
strength on the radius R. This result holds, course only for values R repre-
senting field points inside the torus.
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Ampère’s Law: Magnetic Field Inside a Wire

Consider a long, straight wire of radius R.
The current I is distributed uniformly over the cross section.

Apply Ampère’s law,
∮
~B · d~̀ = µ0IC, to the circular loop of radius r < R.

• The symmetry dictates that the magnetic field ~B is directed tangentially
with magnitude B depending on R only.

• Line integral:
∮
~B · d~̀ = B(2πr).

• Fraction of current inside loop: IC

I
=

πr2

πR2 .

• Magnetic field at radius r < R: B =
µ0IC

2πr
=

µ0Ir
2πR2 .

• B increases linearly with r from zero at the center.

• Magnetic field at the perimeter: B =
µ0I

2πR
.

tsl243

On this page and the next, we use Ampère’s law to calculate the magnetic
field generated by the current in a long, straight wire. We already know the
answer if the field point is outside a thin wire. We found that answer by an
application of the law of Biot and Savart (see page 7 on lecture 23).

The slide on this page walks us through the derivation for the case where
the (circular) loop C is inside the wire. The result is presented as the fourth
item.

The result tells us that the field is zero at the center of the wire and increases
linearly with radial distance r from the center, reaching the value quoted as
the last item when r has reached the perimeter at radius R.
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Ampère’s Law: Magnetic Field Outside a Wire

Consider a long, straight wire of radius R with current I.

Apply Ampère’s law,
∮
~B · d~̀ = µ0IC, to the circular loop of radius r > R.

• The symmetry dictates that the magnetic field ~B is directed tangentially
with magnitude B depending on R only.

• Current inside loop: IC = I.
• Ampère’s law applied: B(2πr) = µ0I.

• Magnetic field at radius r > R: B =
µ0I
2πr

.
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This slide continues the derivation for field points outside the wire. Now the
loop radius r is larger than the radius R of the wire.

The main difference from the previous case is that as we increase the radius
r of the loop, the amount of current that flows through the loop does no
longer change. The result, presented as the fourth item, is the familar result
from lecture 23 (page 7).

The graph on the lower right of the slide shows the field strength as a function
of radial distance r from the center of the wire. The strongest field is realized
at the surface of the wire.
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Ampère’s Law: Application (2)

An electric current I flows through the wire in the direction indicated.

• Determine for each of the five Amperian loops whether the line integral
∮
~B · d~s is positive, negative, or

zero.

I

(2) (3) (4) (5)

(1)
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This is the quiz for lecture 25.

This mental exercise is also a physical exercise for your right hand. It requires
some acrobatics, especially for the twisted loops.

You must follow the fingers of your right hand along the outside of the loop
in the direction of the arrows. While you are doing this, watch the direction
of your thumb. It tells you in every region of the loop which currents to
count positively and which to count negatively.

Of course, it’s always the same current I flowing though the green wire.
However, in some loop vicinities it contributes positively and other loop
vicinities negatively.
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