
PHY204 Lecture 30 [rln30]

RL Circuit: Fundamentals
Specifications:
• E (emf)
• R (resistance)
• L (inductance)

Switch S:
• a: current buildup
• b: current shutdown
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Time-dependent quantities:

• I(t): instantaneous current through inductor

• dI
dt

: rate of change of instantaneous current

• VR(t) = I(t)R: instantaneous voltage across resistor

• VL(t) = L
dI
dt

: instantaneous voltage across inductor

tsl271

This lecture is devoted to RL circuits, which contain resistors and inductors
in addition to EMF sources.

Earlier we have discussed RC circuits, which contain resistors and capacitors.
The mathematical analysis of RL circuits is strikingly similar to that of RC
circuits, even though the physical attributes are quite different.

The slide on this page introduces the prototypical RL circuit. It has a switch
with two settings.

Setting (a) connects the EMF source to a loop with a resistor and an inductor.
In this setting a positive clockwise current is being built up.

Setting (b) disconnects the EMF source from the loop. The consequence is
that the previously established current now gradually shuts down.

We have declared, by an arrow on the slide, that the current direction is
clockwise. This is a smart choice the current during buildup and shutdown
will come out to be positive.

It is important to note that the current in the loop and the voltages across
the resistor and inductor are all functions of time.

On the next two pages we analyze these time-dependent quantities for the
two settings of the switch.
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RL Circuit: Current Buildup in Inductor

• Loop rule: E − IR− L
dI
dt

= 0

• Differential equation: L
dI
dt

= E − IR ⇒ dI
dt

=
E/R− I

L/R∫ I

0

dI
E/R− I

=
∫ t

0

dt
L/R

⇒ − ln
( E/R− I
E/R

)
=

t
L/R

⇒ E/R− I
E/R

= e−Rt/L

• Current through inductor: I(t) =
E
R

[
1− e−Rt/L

]

• Rate of current change: dI
dt

=
E
L

e−Rt/L

ε

t t

ε

R
L

dI/dtI(t)
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Consider the current buildup process with the switch closed to setting (a).
We have a one-loop circuit and invoke the loop rule for the analysis (see first
item). We go around clockwise, first across the EMF source, then across the
resistor, and finally across the inductor, to return to the starting point.

Each term represents a potential difference across one device. For the EMF
it is what is on the label of the battery, for the resistor it is dictated by
Ohm’s law and for the inductor by Faraday’s law.

We recognize that the loop rule is a differential equation for the function I(t).
It can be solved, as shown in the second item, by separation of variables.
The lower integration boundaries represent the initial conditions: at time
zero there is no current yet.

The explicit solution for I(t) is stated in the third item and plotted at the
bottom of the slide. It graphically describes the current buildup process. At
the instant the switch is closed, the current starts growing gradually from
zero. It reaches the value E/R asymptotically as t→∞.

Also shown, analytically and graphically, is the rate at which the current
changes. That rate is largest at the beginning of the process and tapers off
to zero as t→∞.

Apart from a change in scale the graph on the left represents the voltage,
VR(t) = RI, across the resistor and the graph on the right the voltage,
VL(t) = L(dI/dt), across the inductor. The voltage across the resistor in-
creases as the current increases. The voltage across the inductor decreases
and approaches zero as the current becomes steady.
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RL Circuit: Current Shutdown in Inductor

• Loop rule: −IR− L
dI
dt

= 0

• Differential equation: L
dI
dt

+ IR = 0 ⇒ dI
dt

= −R
L

I

⇒
∫ I

E/R

dI
I

= −R
L

∫ t

0
dt ⇒ ln

I
E/R

= −R
L

t ⇒ I
E/R

= e−Rt/L

• Current: I(t) =
E
R

e−Rt/L

• Rate of current change: dI
dt

= −E
L

e−Rt/L

ε

t t

L

−dI/dtI(t)

ε

R
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Throwing the switch from setting (a) to setting (b) means disconnecting the
EMF source from the loop. The loop rule is shown in the first item. We
go around the loop clockwise first across the resistor and then across the
inductor.

We again recognize the loop equation as a differential equation for I(t). We
solve that differential equation in the second item by the same method.

Note the different initial conditions used in the lower boundaries of the in-
tegrals. We have reset the clock to t = 0 when we reset the switch. At that
instant, the current has its steady value E/R from the buildup process.

The explicit solution for I(t) and its derivative are shown analytically and
graphically on the slide.

In the shutdown process, we see the inertial property of inductance at work.
It is the inductor which now drives the current through the resistor. It acts
as an EMF source of sorts.

The voltage L(dI/dt) across the inductor switches sign between current
buildup and current shutdown. It now pushes the current forward. The
current slows down as it is being pushed across the resistor.
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RL Circuit: Energy Transfer During Current Buildup

Loop rule: IR + L
dI
dt

= E (I > 0,
dI
dt

> 0)

• IE : rate at which EMF source delivers energy
• IVR = I2R: rate at which energy is dissipated in resistor

• IVL = LI
dI
dt
: rate at which energy is stored in inductor

Balance of energy transfer: I2R + LI
dI
dt

= IE
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On this page and the next, we examine the energy transfer between devices
during current buildup and current shutdown.

The slide here restates the loop rule during the current buildup. Each term
represents the voltage across one of the three devices that are connected in
the loop in switch setting (a).

When we multiply each term with the same factor I, the equation remains
valid but now has a different interpretation. All terms have the SI unit Watt
[W=J/s], representing power, i.e. transfer of energy per time unit. The
meaning of all three terms is spelled out in the three items on the slide.

Initially, when the current is still small, most of the power that the EMF
source delivers goes into the inductor, where it is being stored. As the current
becomes steady, the delivery of power becomes steady as well. But all of it
is now being dissipated in the resistor, at the rate I2R.

The power storage capacity of the inductor, LI(dI/dt), goes down to zero
when the current I becomes steady. The energy stored on the inductor has
reached its full capacity: U = 1

2
LI2. We know that already from earlier.

The mechanical analog of an EMF source building up a current to a steady
value is a locomotive accelerating a train to a certain speed. During the
acceleration, the power delivered by the locomotive is, in part, converted
into kinetic energy of the entire train and, in part, dissipated via friction and
air resistance.

Once the train has reached traveling speed, the kinetic energy is no longer
augmented, just as the energy in an inductor is no longer augmented when
the current has become steady.

4



RL Circuit: Energy Transfer During Current Shutdown

Loop rule: IR + L
dI
dt

= 0 (I > 0,
dI
dt

< 0)

• IVL = LI
dI
dt
: rate at which inductor releases energy

• IVR = I2R: rate at which energy is dissipated in resistor

Balance of energy transfer: I2R + LI
dI
dt

= 0
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In the setting (b) of the switch, the EMF source has been disconnected. We
assume that at the beginning of the shutdown process, the current has the
value I(0) = E/R, the long-time asymptotic value of the buildup process.

There are now only two terms in the loop rule. When multiplied by the
instantaneous current I(t), each term again represents a power transfer. The
meanings are spelled out in the two items on the slide.

We have seen before that during the shutdown process it’s the inductor that
keeps the current flowing by virtue of its electromagnetic inertia. It can
only accomplish this by releasing energy previously stored. That energy is
needed to push the current through the resistor. The energy released from
the inductor is being dissipated in the resistor, i.e. converted into a different
form (e.g. heat).

The mechanical analog of the current shutdown process is a train slowing
down due to friction between brake pads and wheels. The kinetic energy of
the train is gradually converted into heat.
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RL Circuit: Some Physical Properties

Specification of RL circuit
by 3 device properties:
• E [V] (emf)
• R [Ω] (resistance)
• L [H] (inductance)

ε R

S
L I(t)

Physical properties of RL circuit during current buildup determined by 3 combinations of the device
properties:

• E
L

=
dI
dt

∣∣∣∣
t=0

: initial rate at which current increases

• E
R

= I(t = ∞): final value of current

• L/R = τ: time it takes to build up 63% of the current through the circuit
[1− e−1 = 0.632 . . .]
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How do we characterize an RL circuit?

One way to characterize it is by stating its specifications: EMF E , resistance
R, and inductance L.

An alternative is to characterize it by key physical properties such as are
captured in the three ratios, E/L, E/R, and L/R of the device properties
with interpretations stated on the slide.

This characterization tells us how to adjust the device properties if we aim
for particular values of any of the characteristic ratios.
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RL Circuit: Application (8)

In the circuit shown the switch has been open for a long time.
Find the currents I1 and I2

• just after the switch has been closed,
• a long time later,
• as functions of time for 0 < t < ∞.

S

L = 5H

R  = 10

R  = 5

= 12V

Ω

Ω

ε
1

2

Ι Ι 21
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We complete this lecture with a series of circuits that contain resistors and
inductors in a variety of combinations. Additional applications can be found
among the exam 3 slides.

(a) When we connect the battery by closing the switch, resistor 1 experiences
at once a voltage E = 12V, which at once generates a current I1 = E/R1. The
series combination of inductor and resistor 2 also experiences 12V at once.
However, we know that the current through an inductor can only change
gradually. Hence the answers are

I1 =
12V

5Ω
= 2.4A, I2 = 0.

Nothing changes for resistor 1. In the outer loop we have a current buildup
in process.

(b) Once current I2 has grown to a steady value, the inductor becomes in-
visible in the sense that the voltage L(dI/dt) across it is zero. Resistor 2 is
now, effectively, in parallel with resistor 1. Hence we have

I1 =
12V

5Ω
= 2.4A, I2 =

12V

10Ω
= 1.2A.

(c) The current I2 undergoes the buildup process discussed before:

I2(t) =
E
R2

(
1− e−R2t/L

)
.

Between t = 0 and t = ∞, I2 gradually changes between the two values
determined in parts (a) and (b).
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RL Circuit: Application (7)

In the circuit shown the switch S is closed at time t = 0.

(a) Find the current I as a function of time for 0 < t < tF, where tF marks the instant the fuse breaks.
(b) Find the current I as a function of time for t > tF.

15Ω

5H

4A fuse

S12V
I
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This circuit features a fuse in addition to an EMF source, a resistor, and
an inductor. The fuse is a device that has zero resistance for as long as
the current stays below a certain threshold value, here 4A. When the cur-
rent reaches 4A, it breaks, i.e. it opens the branch. Intact fuses have zero
resistance, broken fuses have infinite resistance.

What happens when we close the switch with the fuse intact?

While the fuse is intact, the resistor is short-circuited by the branch with the
fuse. Both devices are in parallel and thus have the same voltage across. That
voltage is zero across the fuse, hence also across the resistor. In consequence,
there is no current through the resistor. We effectively have a one-loop circuit
with EMF source, the inductor, and the intact fuse in series. The loop rule
thus becomes,

E − L
dI

dt
= 0,

from which we calculate the current as a function of time as follows:

dI

dt
=
E
L

=
12V

5H
= 2.4A/s = const. ⇒ I(t) = (2.4A/s)t.

The current increase linearly in time from zero. It reaches the values 4A at
time tF = (4A)/(2.4A/s) = 1.67s. At this moment, the fuse breaks.

From that instant on, we are dealing with a different one-loop circuit. The
open fuse now forces the 4A current already flowing through the EMF source
and the inductor to also flow through the resistor. The new loop rule reads,

E −RI − L
dI

dt
= 0.
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This is a differential equation for the function I(t), which we can solve by
separating the variables I and t as follows:

⇒ dI

dt
=
E/R− I

L/R
⇒ dI

I − E/R = −R

L
dt.

Next we integrate both sides. The integrations begin at time tF = 1.67s,
when the current has the value IF = 4A.

∫ I

IF

dI ′

I ′ − E/R = −
∫ t

tF

R

L
dt′ ⇒ ln

(
I − E/R
IF − E/R

)
= −R

L
(t− tF ).

As is custom, we have renamed the integration variables in order to dis-
tinguish them from the values at the upper boundaries. Solving the last
expression for I yields the explicit expression,

I(t) =
E
R

+

(
IF −

E
R

)
exp

(
−R

L
(t− tF )

)
.

Note that the final current with the fuse intact is the same as the initial cur-
rent with the fuse broken, namely IF = 4A. At t > tF the current gradually
decreases and settles at the steady-state value I(∞) = E/R = 0.8A.
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RL Circuit: Application (6)

In the RL circuit shown the switch has been at position a for a long time and is thrown to position b at time
t = 0. At that instant the current has the value I0 = 0.7A and decreases at the rate dI/dt = −360A/s.

(a) Find the EMF E of the battery.
(b) Find the resistance R of the resistor.
(c) At what time t1 has the current decreased to the value I1 = 0.2A?
(d) Find the voltage across the inductor at time t1.

S

ε

a

b

R

L = 0.3H
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Here we have a simple RL circuit problem for which two device properties
are unknown, namely E and R.

Not knowing any better, we begin with part (a). There is a steady cur-
rent through the loop in the setting shown. The steady current produces
zero voltage across the inductor. The loop rule gives us a relation with two
unknowns:

E −RI0 = 0.

Let us, therefore, turn to part (b). At the instant the EMF source has been
disconnected, the loop rule contains only one unknown:

−RI0 − L

(
dI

dt

)

0

= 0 ⇒ R = −(0.3H)(−360A/s)

0.7A
= 154Ω.

Now we can solve part (a):

E = (154Ω)(0.7A) = 108V.

For part (c) we use the current shutdown expression and invert it:

I1 =
E
R
e−Rt1/L ⇒ t1 = −L

R
ln

(
I1R

E

)
= 2.44ms.

In part (d) we return to the loop rule used in part (b), but now for t = t1
where I = I1:

−RI1−L
(
dI

dt

)

1

= 0 ⇒ VL(t1) = −L
(
dI

dt

)

1

= RI1 = (154Ω)(0.2A) = 30.8V.
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RL Circuit: Application (5)

Each RL circuit contains a 2A fuse. The switches are closed at t = 0.

• In what sequence are the fuses blown?

S

1H1H

2A

1Ω

1Ω

6V
S

1Ω Ω1

2A

1H

1H

6V

S 2A

1Ω

1Ω1H

1H

S

1Ω Ω11H1H

2A 6V6V
(1) (2)

(3) (4)
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What we are dealing with here is a current buildup process in four different
RL circuits. Each circuit has an equivalent resistor in series with an equiv-
alent inductor. In each circuit, the buildup process is terminated when the
current reaches 2A. At this instant the fuse breaks. It happens at different
times in the four circuits.

First we must calculate Req and Leq for each circuit, which is simple enough.
Check page 10 of lecture 29.

Next we use the current expression from page 2 of this lecture, set I(tF ) =
Imax = 2A and solve it for tF :

Imax =
E
Req

[
1− exp

(
−Req

Leq

t

)]
⇒ tF = −Leq

Req

ln

(
1− ImaxReq

E

)
.

The four values of tF come out as follows:

(1) tF = 1.099s

(2) tF = 0.182s

(3) tF = 0.729s

(4) tF = 0.275s

The ranking follows directly.
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RL Circuit: Application (1)
Each branch in the circuit shown contains a 3A fuse. The switch is closed at time t = 0.

(a) Which fuse is blown in the shortest time?
(b) Which fuse lasts the longest time?

R=6Ω

L=6H

C=6F

12V
S

1

2

3
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This is the quiz for lecture 30.
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