PHY 204 Lecture 31 ..s

Mechanical Oscillator e

2
« law of motion: F =ma, a= Ex
dr?
- law of force: F = —kx
. . dx k
+ equation of motion: — = ——a
q dar? m

- displacement: x(t) = xax cos(wt)

« velocity: v(t) = —wXy sin(wt)

- angular frequency: w = % k
1 5, m
- kinetic energy: K = Fmv X

- potential energy: U = %kxz

- total energy: E = K+ U = const.
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This lecture is devoted to circuits with capacitors, inductors, and resistors in
different combinations. We are already familiar with RC' circuits (charging
and discharging of capacitors) and RL circuits (current buildup and shut-
down). We shall see that LC' circuits are electromagnetic oscillators.

In many instances, it is illuminating to see and understand the analogies
between certain mechanical and electromagnetic phenomena. We begin with
a review of the mechanical oscillator, which has, as mentioned, its electro-
magnetic counterpart in the LC circuit.

The slide shows a block of mass m on a frictionless surface, attached to a
wall by a spring with stiffness k. The block undergoes harmonic oscillations.
The equation of motion (Newton’s second law) [first item] with the particular
elastic force in action [second item] is a familiar differential equation for the
position variable [third item| with a familiar solution [fourth item]. The
velocity v(t) [fifth item] is the derivative of the position function z(t).

There are two forms of energy in play: kinetic energy and potential energy.
The former depends on velocity and the latter on position. Both quantities
are function of time. The total (mechanical) energy is conserved, imply-
ing that during the oscillations, energy is converted back and forth between
kinetic and potential.

When the spring is instantaneously relaxed (z = 0), the energy is all kinetic
and when the block is instantaneously at rest (v = 0), it is all potential.



Electromagnetic Oscillator ( LC Circuit) Oy

QA 4R
loop rule: C +Ldt =0,1= =
. . dQ 1
equation of motion: o _EQ
- charge on capacitor: Q(t) = Quax cos(wt)
« current through inductor: I(t) = —wQyax sin(wt)
- angular frequency: w = —
g q y Vic
- magnetic energy: Uy = %le (stored on inductor) C — L
Q?

- electric energy: Up = T (stored on capacitor)

- total energy: E = Up + U = const.
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The LC' circuit is an electromagnetic oscillator. We begin its analysis with
the loop rule as usual [first item]. We recall that the current I(t) is the
derivative of the charge Q(t) on the capacitor. This relationship is analogous
to the velocity and position variables on the previous page.

The loop rule then leads to a differential equation for the function Q(¢) that
is mathematically equivalent to the one on the previous page. The solutions
for Q(t) and I(t) follow in like manner.

Charge only accumulates on the capacitor but the current is everywhere
except between the capacitor plates. However, for the energy accounting it’s
the current through the inductor that matters.

Keep the last clause in the first sentence of the previous paragraph in mind
for later. There actually exist a sort of current between the capacitor plates.
It is called displacement current and will play an important role in the full
version of Ampere’s law (stay tuned).

There are again two forms of energies that are being converted into each
other back and forth with no loss. They are the magnetic energy located on
the inductor and the electric energy located on the capacitor.

When the capacitor is fully charged, the current vanishes instantaneously as
it changes direction. At these instants, the energy is all electric, stored in
the electric field of the capacitor. The current reaches its maximum value
when the capacitor is fully discharged. At those instants, the energy is all
magnetic, stored in the magnetic field of the inductor.



Mechanical vs Electromagnetic Oscillations

mechanical oscillations

. . 71 >
« position: x(t) = Acos(wt) [red] potential energy: U(t) = ka "]
+ velocity: v(t) = —Asin(wt) [green] - kinetic energy: K(t) = %mvz(i‘) [g]
. period: T = %T w = % + total energy: E = U(t) + K(t) = const
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electromagnetic oscillations

; . _ 1
« charge: Q(t) = Acos(wt) [red] electric energy: Ug(f) = ZCQ QY
- current: I(t) = —Asin(wt) [green] + magnetic energy: Up(t) = %le(t) [g]
« period: 7= 237{ w= \/% - total energy: E = Ug(t) + Up(t) = const
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This slide emphasizes the correspondence between attributes of the mechan-
ical oscillator on top and the electromagnetic oscillator at the bottom.

The graph on the left shows two curves that represent the dynamical variable
and its derivative. In the mechanical realization of the oscillator, they are
the position of the block and its velocity. In the LC circuit, they are the
charge on the capacitor and the current through the inductor.

The two curves in the graph on the right show the two forms of energy.
They are the potential energy and kinetic energy in the mechanical oscillator.
In the electromagnetic oscillator, they are the electric energy and magnetic
energy.

Note that during one full period of the oscillation, each form of energy reaches
its maximum twice. The kinetic energy has a maximum when the block moves
with maximum velocity in one or the other direction. The potential energy
has a maximum when the spring is maximally compressed or maximally
stretched.

Likewise, the electric energy has a maximum when the capacitor is fully
charged one way and then again with positive and negative charges inter-
changed. The magnetic energy has its peaks when the current reaches a
maximum flowing in one or the other direction.



Mechanical Oscillator with Damping @
x(1) —n
— x
« law of motion: F=ma, a= ¥
« law of force: F= —kx—bv, v= Z—T N —
+ equation of motion: dz—x+£ﬂ+£ =0 \/
4 AR Tmd Twm T v(t)
//\\/ )
Solution for initial conditions x(0) = A, v(0) = 0: \\/
(a) underdamped motion: b? < 4km
x(t) = Ae /2" | cos(w't) + b sin(w't)|  with «' = k_ i
. 2mw’ m - 4m?

(b) overdamped motion: > > 4km

2
sinh(Q/t)] with Q' = h— — E

_ pp-bt/2 /
x(t) = Ae” /" [cosh(ﬂ )+ e

b
2mQY’
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The analogy between mechanical and electromagnetic oscillators still holds
in the face of energy dissipation. In the mechanical case we add a damping
force to the elastic force [second item]. This adds a term to the differential
equation for the function z(t) [third item].

Mathematically speaking this is a linear, homogeneous, second-order ordi-
nary differential equation (ODE). Methods of analysis are typically discussed
in higher-level courses. Here we just pull the solution shown on the slide out
of a magician’s hat. That hat could be a software such Mathematica or
Matlab.

Note that the expression is different for the two cases of weak and strong
coupling. There is yet a different solution at the border between the two
regime (called critical damping). The graphs show that oscillations only
persist in the underdamped case but the periodicity is no longer present.

If you are unfamiliar yet with hyperbolic function, it is enough for now to
know that the hyperbolic cosine and sine functions are linear combinations
of exponential functions:

1
coshx = 5[6’” +e 7], sinhz= é[ez —e .

Part of their usefulness is that the two are derivatives of each other.

The sum of kinetic and potential energy is no longer a constant. It is now
a decreasing function of time (not shown graphically). That does not mean
that energy is not conserved. It simply means that mechanical energy is
converted into yet a different form of energy (heat caused by friction).



Damped Electromagnetic Oscillator (RLC Circuit) o0
t

. a Q_, -4
loop rule: RI+L[“+C =0,I1= it
#Q RdQ & 1

. i f jon: —=~+_—- =4+ _—_Q=
equation of motion dt2+L dt+LCQ 0 ‘ \/

1(1)

Solution for initial conditions Q(0) = Quuax, 1(0) = 0:

’, /N
(a) underdamped motion: R? < % v

{

R 1 R2
_ ~Rt/2L . . -~
Q(t) = Quaxe ™ [COS(W,f> + L Sm(w’f)] with o' = ez
(b) overdamped motion: R? > %L
R R2 1
_ —Rt/2L . ) B
Q(t) = Quaxe [cosh(()/t) + CTH smh(Q't)} with Q' = iz ic
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Adding damping to the mechanical oscillator corresponds to adding a resistor
to the LC' circuit. The mathematical equivalence is quite evident. In the loop
rule we now include a term RI.

The differential equation for the function Q(¢) of the RLC circuit has the
same structure as that for the function z(¢) in the mechanical oscillator. Only
the parameters are different. The correspondences are as follows:

IR

2() 2 Q). o) ZI(t), m=L, b=R, k==
The same correspondences can be used to transcribe the solutions. The
curves in the graph are the same. Only the labeling has been changed.

In the RLC' circuit, the sum of magnetic and electric energy is no longer
conserved. It decreases whenever a current flows. The presence of resistance
converts some of the magnetic or electric energy into heat. In the under-
damped regime, no energy is dissipated at those instants when the current
changes direction.



Oscillator with Two Modes T

Electromagnetic: }74{
Cdl Q Q al 7@ 0
mode #1: L$+E+§+L370' Iﬁa’t l T T l
a__Q FQ_ 2 -
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CdlQ 2Q _dQ fi
mode #2: La+6+?70, Ifﬁ l T l T
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Mechanical:

mode #1: w = '/5
m
mode #2: w = \/%
m
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Here we return to an electromagnetic oscillator without damping and its
mechanical analogue. The LC circuit with two inductors and three capacitors
can oscillate in two different ways (named modes), depending on what the
initial state is.

In mode #1, the capacitor in the middle does not participate. It remains
uncharged. The current oscillates as indicated by the arrows in the upper
circuit diagram. The loop-rule analysis is worked out on the left as before.

In mode #2, there are two equal currents in the left and right branches. The
current thus doubles in the middle. At one instant, the current directions
are represented by blue arrows, half a period later by the red arrows. The
loop-rule analysis is worked out for the loop on the left. It is identical for
the loop on the right.

Note that the angular frequency of mode #2 is higher that of mode #1.
When the LC circuit is launched from an arbitrary initial state, both modes
are present simultaneously in superposition.

The same is true for the mechanical analogue shown a the bottom of the slide.
When it oscillates in the slower mode, both masses move in the same direction
all the time and the spring in the middle does not change its extension. The
faster mode, by contrast, has the two masses move in opposite direction all
the time, which now also compresses and stretches the spring in the middle.



RLC Circuit: Application (1) YT

In the circuit shown the capacitor is without charge.
When the switch is closed to position a...

(a) find the initial rate dI/dt at which the current increases from zero,

(b) find the charge Q on the capacitor after a long time.
Then, when the switch is thrown from a to b...

(c) find the time #; it takes the capacitor to fully discharge,

(d) find the maximum current I, in the process of discharging.

12V 4Q
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When the switch is closed to a we have an RLC' circuit including a battery.
The loop rule includes four terms:

dl  Q
E—L———=—RI=0. 1
da C (1)
For part (a) we note that the capacitor is initially uncharged, @ = 0, and the
current zero, I = 0, because no abrupt current change through the inductor
is possible. That leaves only two terms in Eq. (1), from which infer the
answer, dI/dt = £/L = 2400A/s.

For part (b) we wait until the capacitor is fully charged and the current again
zero, implying I = 0 and dI/dt = 0. From the two nonzero terms in Eq. (1)
we infer the answer, Qna.x = CE = 240nC.

When we toggle from a to b, the battery and the resistor are disconnected.
The new loop still contains the inductor and the capacitor. The current is
instantaneously zero and the capacitor is fully charged. We have an LC
oscillator running at angular frequency w = 1/ VLC =1.00 x 10°rad/s. The
period is 7 = 27 /w and the answer to part(c) is ¢; = 17 = 1.57 x 10°s.

The quickest way to answer part (d) is to recall that Q(f) = Qmax cos(wt)
with Qmax from part (b). Hence we have I(t) = dQ/dt = —wQmnax sin(wt),
implying that [,.x = WQmax = 24mA.

Alternatively, we use energy conservation:

2
1 max
max __ _L]2 = Imax — Q— — meaX = 24mA

2C 2 max /LC



RLC Circuit: Application (2)

In the circuit shown the capacitor is without charge and the switch is in position a.

(i) When the switch is moved to position b we have an RL circuit with the current building up gradually:
I(t) = (E/R)[1 —e /7).

Find the time constant 7 and the current L, after a long time.

(i) Then we reset the clock and move the switch from b to ¢ with no interruption of the current through the
inductor. We now have a an LC circuit: I(t) = Lyax cos(wt).

Find the angular frequency of oscillation w and the maximum charge Q,..x that goes onto the capacitor
periodically.

AW
34V 14Q bl a

6.2uF CQ

[
54mH

"
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When the switch is at a, there are no closed loops. Nothing moves. Closing
the switch to b produces an RL circuit undergoing a current buildup process
with the capacitor still disconnected. The slide quotes the a familiar result,

1t =50 -],

(i) The time constant in an RL circuit with specs as shown on the slide is,

L
T = — = 3.86ms.
R
Once the current settles into a steady state, the inductor becomes invisible
in the sense that the voltage across it goes down to zero. We then have,
effectively, a loop with the EMF driving a current through the resistor. That

current is the long-time limit in the buildup process:
Loy = 1i I(t)—g—243A
max = 1 1(0) = 75 = 2434

(ii) Throwing the switch from b to c replaces the EMF source and the resistor
by a capacitor while the current is flowing steadily. We now have an LC'
oscillator. The current with the clock reset at the instant the switch is
thrown now oscillates as does the charge on the capacitor:

I(t) = Ipaxcos(wt) = Q(t) = /[(t)dt = Irz)ax sin(wt),

with

w =

1 I
—— =1.73 x 10%rad/s, ke = —= = 1.43mC.
e /s, @ -



RLC Circuit: Application (3)

In the circuit shown the capacitor is without charge and the switch is in position a.

(i) When the switch is moved to position b we have an RC circuit with the capacitor being charged up
gradually: Q(t) = EC[1 —e /7).

Find the time constant T and the charge Q,,, after a long time.
(i) Then we reset the clock and move the switch from b to c.
We now have a an LC circuit: Q(t) = Quax cos(wt).

Find the angular frequency of oscillation w and the maximum current I, that flows through the inductor

periodically.
W
34V 14Q
6.21F b
1] a
54mH ¢
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In this scenario, the inductor and the capacitor are effectively interchanged.
We begin with the charging process of an RC' circuit and then switch to an
LC oscillator. The charge on the capacitor during the charging process is

Q(t) = EC[1 — 7).

(i) Given the specs on the slide, the time constant and maximum charge
become

7= RO =86.8s, Quax = lim Q(t) = £C = 2.11 x 107*C.

(ii)) When we throw the switch from b to ¢ and reset the clock, the charge
on the capacitor and the current through the inductor of the LC loop now
become
dq .
Q(t) = Qmaxcos(wt) = I(t) = o= —WQmax sin(wt),
with

1
w=——==173x10%ad/s, Inax = WQmax = 0.365A.
VIC / <

The LC circuit on this and the previous page are both launched with energy
in them. In the circuit on this page, the initial energy is stored in the electric
field of the charged-up capacitor. In the circuit on the previous page, it is
stored in the magnetic field of the current-carrying inductor.



LC Circuit: Application (1)

Name the LC circuit with the highest and the lowest angular frequency of oscillation.

“)
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This is the quiz for lecture 31.

Check the rules for equivalent capacitances and inductances as summarized
in lecture 29.
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