
PHY204 Lecture 33 [rln33]

AC Circuit Application (2)

In this RLC circuit, we know the voltage amplitudes VR, VC, VL across each device, the current amplitude
Imax = 5A, and the angular frequency ω = 2rad/s.

• Find the device properties R, C, L and the voltage amplitude Emax of the ac source.
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We pick up the thread from the previous lecture with the quantitative anal-
ysis of another RLC series circuit. Here our reasoning must be in reverse
direction compared to that on the last page of lecture 32.

Given the current amplitude (measured by the ammeter connected in series)
and the voltage amplitudes for each devices (measured by the voltmeters
connected in parallel), we can infer the single-device impedances from the
ratios:

XR =
50V

5A
= 10Ω, XC =

25V

5A
= 5Ω, XL =

25V

5A
= 5Ω.

The device properties follow directly:

R = 10Ω, C = 0.1F, L = 2.5H.

The general expression for the EMF is, we recall from the previous lecture,

Emax =
√
V 2
R + (VL − VC)2.

The minus sign in that expression is due to the fact that the voltages across
an inductor and a capacitor connected in series are opposite in phase. Here
they are equal in magnitude. Hence we have Emax = VR = 50V.
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Impedances: RLC in Series (1)
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We have learned that the impedance of the inductor, XL = ωL, and of the
capacitor, XC = 1/ωC, depend on the angular frequency. The impedance of
the resistor is just its resistance, XR = R.

At high frequencies, inductors have large impedance because the (sluggish)
current must change rapidly. Capacitors, by contrast, have low impedance
at high frequency because they never get a change to charge up significantly.

At low frequencies, the opposite is the case. Inductors become near invisible
if the current changes very slowly, whereas capacitors charge up and block
any further current until it changes direction.

In an RLC series circuit, the impedance Z is large at low frequencies be-
cause of the capacitor and again large at high frequencies because of the
inductor. In between, Z has a minimum, realized when the two terms inside
the parenthesis are equal in size.

This is the case at the resonance frequency ω0. At resonance, the (reactive)
impedances of the inductor and the capacitor cancel each other. The resulting
impedance is the resistance of the resistor.

Removing the resistor from the RLC series circuit means taking the limit
R→ 0. The resulting expression for the LC series circuit is shown. It touches
down to zero at the resonance frequency.

An RLC circuit with very small resistance, when driven at resonance, pro-
duces (i) a huge current, which is potentially damaging; (ii) a significant
current from a very weak EMF, which is essential for radio receivers.
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Impedances: RLC in Series (2)

limit C → ∞
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If instead we remove the capacitor from the RLC circuit, we take the limit
C →∞. The resulting expression for the impedance of the RL series circuit
is shown and plotted on the left. Conversely, removing the inductor, means,
taking the limit L → 0, which yields the results for the RC series circuits
shown on the right.

The RL circuit driven by an EMF of given amplitude produces a high-
amplitude current at low frequencies and a low-amplitude current at high
frequencies. The opposite is the case for the RC circuit.

If we have an EMF that is a superposition of oscillations at different frequen-
cies ωi, it produces a current that is also a superposition of oscillations at
the same frequencies but with a different distribution of amplitudes and with
different phases:

E(t) =
∑

i

E (i)max cos(ωit), ⇒ I(t) =
∑

i

E (i)max

Z(ωi)
cos(ωit− δi).

Expressions for Z(ωi) are shown on this and the previous page. The depen-
dence of δi on ωi was worked out in the previous lecture.

If the circuit is of the RL-type, current amplitudes at high frequencies are be-
ing suppressed. If it is of the RC-type, current amplitudes at low frequencies
are being suppressed.

These features can be used to filter out noise from electromagnetic signals as
illustrated on the next page.
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Filters

tsl468

Consider an electromagnetic signal that produces, in an antenna, an EMF in
the form a of a superposition of oscillations at different frequencies as noted
on the previous page.

We can suppress high-frequency noise by sending the current through an RL
series circuit (low-pass filter). Conversely, we can suppress low-frequency
noise by sending the same signal through an RC series circuit (high-pass
filter).

We can clean up a signal of frequency ω0 (with a certain bandwidth) by
sending it through an RLC series circuit that resonates at ω0 (band-pass
filter). The capacitor will suppress low-frequency noise and the inductor will
suppress high-frequency noise.

Note that a low-pass-filter connected to the ground acts as a high-pass filter
and vice versa.
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RLC Series Resonance (1)
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Here we take a closer look at the resonance of the RLC series circuit. We
assume that the EMF is monochromatic, which means that it oscillates with
a single frequency ω: E(t) = Vmax cos(ωt). We also assume that our ac source
is such that we can vary ω and see how the circuit responds.

On this page we focus on the ω-dependence of the amplitude Imax and the
phase angle δ of the general current expression,

I(t) = Imax cos(ωt− δ).

For completeness, we also show the ω-dependence of the impedance Z.

In the limit ω → 0, the ac signal turns into a constant voltage such as
supplied by a battery. The current amplitude vanishes in that limit. The
capacitor blocks a direct current (dc) in a steady state. We recall this fact
from our discussion of RC circuits.

The current amplitude reaches a maximum at resonance (ω = ω0). Here the
phase angle δ is zero. The current and the EMF are in phase.

At ω < ω0, the phase angle is negative. Here the capacitive reactance dom-
inates and suppresses the current amplitude. At ω > ω0, the phase angle is
positive. Here the inductive reactance dominates and again suppresses the
current amplitude.

5



RLC Series Resonance (2)
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• relaxation times: τRC = RC, τRL = L/R

• angular frequencies: ωL =
ω0√

1 − (ω0 τRC)2/2
, ωC = ω0

√
1 − (ω0 τRC)2/2

• voltages: Vmax
0 = Vmax ω0 τRL, Vmax

L (ωL) = Vmax
C (ωC) =

Vmax
0√

1 − (ω0 τRC)2/4
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On this page, we examine the ω-dependence of the voltage amplitudes across
the resistor, the inductor, and the capacitor. The expressions are readily
inferred from the expression for Imax(ω) from the previous page.

The slide does not the show the explicit expressions but a graph for each.
All three voltages resonate in the sense that their amplitudes are peaked at
one particular frequency.

Note that only the voltage across the resistor resonates at ω0, where the
current resonates. The voltage across the inductor resonates ate at ωL, which
is slightly higher and the voltage across the capacitor resonates at ωC , which
is slightly lower.

The expressions for these shifted resonance frequencies and the peak values
of all three voltage amplitudes are stated on the slide. In those expressions
we have used the relaxation times τRC and τRL previously introduced in the
contexts of RC circuits and RL circuits, respectively.

Note the distinct behavior of the three voltage amplitudes in the low-frequency
and high-frequency limits. The voltage amplitude for the resistor approaches
zero in both limits. That is not the case for the other two devices.

The loop rule dictates that the voltage supplied by the ac source is distributed
across the three devices. This is true for the instantaneous values, not the
amplitudes.

In the limit ω → ∞, all that voltage is across the inductor and in the limit
ω → 0, all that voltage is across the capacitor for reasons explained earlier.
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RLC Parallel Circuit (1)

Applied alternating voltage: E = Emax cos ωt

Resulting alternating current: I = Imax cos(ωt− δ)

Goals:

• Find Imax, δ for given Emax, ω.
• Find currents IR, IL, IC through devices.

Junction rule: I = IR + IL + IC

Note:

• All currents are time-dependent.
• In general, each current has a different phase
• IR has the same phase as E .
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Next we analyze the RLC parallel circuit. The primary goal is the same as
for the RLC series circuit, namely to calculate the amplitude Imax of the
current through the EMF source and its phase angle δ.

In this case, the voltage supplied is the voltage across each device. Each
device has a separate current flowing through it, IR, IL, and IC . They
are measured by the four ammeters shown, which we again assume to have
negligible impedance. Our task is to predict what these currents are and
then to assemble them into the current that flows through the EMF source.

The analysis of the RLC series circuit started from the loop rule. Here we
start from the junction rule (see slide), keeping in mind that it applies to
instantaneous currents, not to amplitudes. Each current has its own phase.

From the single-device circuits analyzed earlier we know the phase relation-
ship between the EMF E(t) and each of the currents IR(t), IL(t), IC(t): the
voltage E(t) is in phase with IR(t), lags behind IC(t) by π/2 and leads IL(t)
by π/2 (see pages 2-4 of lecture 32).

We also know the ratios of voltage amplitude and current amplitude for the
resistor, the capacitor, and the inductor. These ratios are the single-device
impedances. The three current amplitudes inferred from these ratios are
listed on the slide of the next page.

From this information it is possible to extract the current amplitude Imax and
the phase angle δ in the general current expression, I(t) = Imax cos(ωt− δ).
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RLC Parallel Circuit (2)

Phasor diagram (for ωt = δ):
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The phasor diagram on the slide helps to explain the extraction of that
information. At the instant shown, the EMF E assumes the maximum value,
implying that the current IR through the resistor, which is in phase with
the voltage across it, assumes its maximum value as well. The current IC
through the capacitor leads by π/2 and the current IL through the inductor
lags by π/2.

In order that the junction rule is satisfied at all instants in time, we must
construct the phasor for the current I(t) geometrically from the phasors of the
currents IR(t), IC(t) and IL(t) as carried out in the diagram. This geometric
construction accomplishes what we set as our goal:

• It fixes the ratio between the (known) EMF amplitude Emax and the
current amplitude Imax (to be determined).

• It fixes the phase angle δ between EMF phasor and current phasor.

For the first item we use the Pythagorean theorem as worked out at the
bottom of the slide. Each quantity on the right-hand side of the first equation
contains a factor Emax, which we can pull out to arrive at the desired relation.
The ratio Emax/Imax is the impedance of the RLC parallel circuit (see next
page).

8



RLC Parallel Circuit (3)

Impedance: 1
Z
≡ Imax

Emax
=

√
1

R2 +

(
1

ωL
−ωC

)2

Current amplitude and phase angle:

• Imax =
Emax

Z
= Emax

√
1

R2 +

(
1

ωL
−ωC

)2

• tan δ =
IL,max − IC,max

IR,max
=

1/ωL−ωC
1/R

Currents through devices:

• IR =
E
R

=
Emax

R
cos(ωt) = IR,max cos(ωt)

• IL =
1
L

∫
Edt =

Emax

ωL
sin(ωt) = IL,max cos

(
ωt− π

2

)

• IC = C
dE
dt

= −ωCEmax sin(ωt) = IC,max cos
(

ωt +
π

2

)

ε

I

I
R

I

IC

C

LI

−IL

δ

tsl308

Once we know the impedance Z of the RLC parallel circuit as a function of
the circuit specs, ω,R, L, C, we can determine the current amplitude Imax

from Z and the given Emax.

Geometrically, the tangent of the phase angle δ is a ratio of current am-
plitudes as shown. If we pull out the factor Emax in both numerator and
denominator, we are left with an expression that depends on the same specs
as the impedance.

Next we calculate the currents across the resistor, the inductor, and the
capacitor as functions of time. This is demonstrated on the last three lines
of the slide. Here we use the impedances of single devices as established
earlier. The last expression on each line reflects the relative orientation of
the voltage phasors shown on the slide.
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Impedances: RLC in Parallel (1)
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The familiar and by now well-understood ω-dependence of the reactances XL

and XC plays out differently in the RLC parallel circuit from what we have
found in the RLC series circuit.

In an RLC parallel circuit, the impedance is low when the current is high
through one of the three devices. This is the case for the inductor at low
ω and for the capacitor at high ω. Note that what is plotted is the inverse
impedance.

The resonance frequency ω0 has the same value as in the series circuit, but it
has a different meaning. At resonance, where the two reactances are equal,
the currents through the inductor and the capacitor are equal in amplitude
but opposite in phase. Hence their net contribution to the current I vanishes.
The current I through the ac source is then equal to the current IR through
the resistor.

Removing the resistor form the RLC parallel circuit means taking the limit
R → ∞. The resulting expression for inverse impedance of the LC parallel
circuit is shown. It touches down to zero at the resonance frequency, implying
that the impedance diverges.

An RLC parallel with very small resistance, when driven at resonance, pro-
duces huge currents through the inductor and the capacitor. Think of one big
current oscillating back and forth within the LC loop and very little current
going through the ac source.
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Impedances: RLC in Parallel (2)
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If instead we remove the capacitor from the RLC parallel circuit, we take the
limit C → 0. Zero capacitance or infinite resistance (on the previous page)
mean, in practice, that no current gets through. These devices are effectively
disconnected.

The resulting expression for the impedance of the RL series circuit is shown
and plotted on the left. Conversely, removing the inductor, means, taking
the limit L→ 0, which yields the results for the RC series circuits shown on
the right.

In a note of caution we must add that an inductor with infinite inductance
would still be invisible to a steady current. But no steady current through
an inductor can be established if its inductance is infinite.

We see that the impedance of the RL parallel circuit becomes very small at
low frequency and the impedance of the RC parallel circuit very small at
high frequency.

Note that ω is, strictly speaking, the angular frequency. The frequency is
f = ω/2π. The SI unit of the former is rad/s and that of the latter is Hertz
[Hz]. It is common, albeit a bit confusing, to say or write high-frequency or
low-frequency and mean, respectively, high or low angular frequency.
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RLC Parallel Resonance (1)
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Here we take a closer look at the resonance of the RLC parallel circuit, driven
by the EMF E(t) = Vmax cos(ωt) with variable angular frequency ω.

The circuit responds with a current,

I(t) = Imax cos(ωt− δ),

where the amplitude Imax and the phase angle δ depend on ω as shown on
the slide. For completeness, we also show the ω-dependence of the inverse
impedance 1/Z.

In the limit ω → 0, the ac signal turns into a constant voltage such as
supplied by a battery. The current amplitude diverges in that limit, for
which the inductor is responsible. It is invisible to direct currents.

The current amplitude reaches a minimum at resonance (ω = ω0). Here the
phase angle δ is zero, which should not be a surprise. The current through the
resistor produces no phase shift relative to the EMF. The currents through
the inductor and the capacitor have the same amplitude and opposite phase.
They do not contribute to the current through the ac source.

In the high-frequency limit, ω → ∞, the current amplitude again diverges,
but for a different reason. The current through the capacitor is responsible
for that effect. The capacitor gets no chance at high frequency to charge up
significantly and produce a significant voltage.

At ω < ω0, the phase angle is positive. Here the inverse inductive reactance
dominates by enhancing the current through the inductor. At ω > ω0, the
phase angle is negative. Here the inverse capacitive reactance dominates by
enhancing the current through the capacitor.
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RLC Parallel Resonance (2)
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The enhanced currents mentioned at the bottom of the previous page are
evident in the graphs on this slide. It shows the amplitudes of the current
through each device. For the resistor that amplitude is independent of ω as
is the impedance XR = R.

The current through the inductor is enhanced at low ω and the current
through the capacitor is enhanced at high ω.

The current amplitudes at resonance are the same for the inductor and the
resistor, as mentioned before, and their phases are opposite.
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AC Circuit Application (3)

Find the current amplitudes I1, I2, I3

(a) for angular frequency ω = 2rad/s,
(b) for angular frequency ω = 4rad/s.

~

A

A

A

εmax =50V

I
3

I2

I1C=0.1F

L=2.5H

R=10Ω

tsl309

This is the quiz for lecture 33.

We analyze a specific RLC parallel circuit, run at two different angular fre-
quencies. We work out part (b) on this page. The quiz answers part (a).

Part (b): It is useful to first determine the single-device impedances:

XR
.
= R = 10Ω, XL

.
= ωL = 10Ω, XC

.
=

1

ωC
= 2.5Ω.

The current amplitudes thus become,

Imax
R =

Emax

XR

= 5A, Imax
L =

Emax

XL

= 5A,

V max
C =

Emax

XC

= 20A.

We recall the phase relationships between these three currents as encoded in
the phasor diagrams for the RLC parallel circuit to conclude that

Imax
1 = Imax

C = 20A, Imax
2 = |Imax

L − Imax
C | = 15A,

To answer the last question we take a look at the phasor diagram on the
previous page and recognize that the voltages across inductor and capacitor
are opposite in phase. Hence we have

V max
LC = |V max

L − V max
C | = 98.6V.

Imax
3 =

√
(Imax

R )2 + (Imax
2 )2 = 15.8A.

Part (a): your turn!
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