
PHY204 Lecture 6 [rln6]

Electric Field of Uniformly Charged Spherical Shell

• Radius of charged spherical shell: R

• Electric charge on spherical shell:
Q = σA = 4πσR2.

• Use a concentric Gaussian sphere
of radius r.

• r > R: E(4πr2) =
Q
ε0

⇒ E =
1

4πε0

Q
r2

• r < R: E(4πr2) =
Qin

ε0
= 0

⇒ E = 0
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We begin this lecture with two applications of Gauss’s law for the purpose
of calculating the electric field of spherically symmetric charge distributions.

Here we consider a thin shell of radius R. It is uniformly charged, by which
we mean that the charge per unit area σ is the same everywhere on the shell.
We recall that the area is A = 4πR2. Hence the total charge is Q = σA.

Symmetry dictates that the electric field is radial and that its magnitude
can only depend on the radius. Hence the electric flux through a (fictitious)
Gaussian sphere of any radius r is the product of the field strength at that
radius, E(r), and the area of the Gaussian surface 4πr2.

If r > R, then the spherical shell is inside the Gaussian surface. Therefore,
the total charge inside is Q, the charge on the shell. Gauss’s law, which
relates the electric flux through the Gaussian surface to the net charge inside,
thus produces an equation that can be solved for the field E(r), which is the
familiar Coulomb field.

If r < R, then the spherical shell is outside the Gaussian surface, which
implies that there is no charge inside the Gaussian surface. Gauss’s law
then says that the flux through the Gaussian sphere, 4πr2E(r), is zero. The
inevitable consequence is that E(r) vanishes.

These results can be verified by using Coulomb’s law. That calculation re-
quires that we pick a field point either outside or inside the shell and then
divide the charge distribution on the shell into rings, which have a given dis-
tance from the field point. Adding up the field contributions from all rings
reproduces, with some effort, the above results.
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Electric Field of Uniformly Charged Solid Sphere

• Radius of charged solid sphere: R

• Electric charge on sphere:
Q = ρV =

4π

3
ρR3.

• Use a concentric Gaussian sphere
of radius r.

• r > R: E(4πr2) =
Q
ε0

⇒ E =
1

4πε0

Q
r2

• r < R: E(4πr2) =
1
ε0

(
4π

3
r3ρ

)

⇒ E(r) =
ρ

3ε0
r =

1
4πε0

Q
R3 r
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Here we consider a solid sphere, again of radius R, but now with uniform
volume charge density ρ. The volume of the sphere is V = (4π/3)R3. The
total charge is Q = ρV .

The method of calculating the electric field E(r) remains the same as de-
scribed on the previous page. For distances r > R from the center of the
sphere, the result is the same. As long as the charge distribution is spher-
ically symmetric and located inside the Gaussian sphere, we always recover
the familiar Coulomb field of a point charge.

For values r < R, the electric field does not vanish as it does for the spherical
shell. The reason for this difference is quite obvious. There is still electric
charge positioned inside the Gaussian sphere, a fraction of the charge Q on
the solid sphere. The amount of charge inside is equal to the charge density
multiplied by the volume of the Gaussian sphere. The resultant field E(r) is
worked out in the last item on the slide.

We see that the electric field vanishes only at the center of a uniformly
charged solid sphere. The field strength increases linearly with radius be-
tween the center and the surface.

These results can again be verified by using Coulomb’s law. In that calcu-
lation, we would slice the sphere into thin disks. We already know (from
lecture 4) the field generated by a uniformly charged disk. Summing up the
field contributions from disks that make up a solid sphere is mathematically
more complex than this application of Gauss’s law.

However, let us keep in mind that our elegant methodology only works if the
symmetry conditions stated earlier apply.
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Electric Field of Oppositely Charged Infinite Sheets

• Consider two infinite sheets of charge with charge per unit area ±σ, respectively.
• The sheets are positioned at x = 0 and x = 2m, respectively.
• Magnitude of field produced by each sheet: E =

σ

2ε0
.

• Electric field at x < 0: Ex = E(+)
x + E(−)

x = − σ

2ε0
+

σ

2ε0
= 0.

• Electric field at 0 < x < 2m: Ex = E(+)
x + E(−)

x = +
σ

2ε0
+

σ

2ε0
=

σ

ε0
.

• Electric field at x > 2m: Ex = E(+)
x + E(−)

x = +
σ

2ε0
− σ

2ε0
= 0.
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Now we switch focus from charge configurations with spherical symmetry to
large, plane sheets with uniform charge per unit area σ spread over them. We
already know that they are the source of uniform electric fields of strength
|σ|/2ε0 on either side of them.

The field has the same magnitude and direction at all points on one or the
other side of the sheet. If the sheet is positively (negatively) charged, the
electric field is pointing away from it (toward it).

What is the electric field generated by two parallel sheets that are oppositely
charged with uniform surface charge densities +σ and −σ, respectively? The
key to the answer is the superposition principle.

The sheets are positioned in a coordinate system as shown on the slide. The
two sheets divide the space into three regions. On the left of both sheets or
to the right of both sheets, each sheet produces a field of the same strength
but opposite direction. Hence the resultant field vanishes.

In the third region, between the sheets, the two fields also have the same
strength but now the directions are the same.

The result to remember is that oppositely charged parallel sheets produce a
uniform electric field of strength E = σ/ε0 between them and zero field in
the exterior regions. The electric field is pointing from the positively charged
sheet toward the negatively charged sheet.
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Unit Exam I: Problem #2 (Spring ’09)

Consider two very large uniformly charged parallel sheets as shown.

The charge densities are σA = +7× 10−12Cm−2 and σB = −4× 10−12Cm−2, respectively.

Find magnitude and direction (left/right) of the electric fields E1, E2, and E3.

EE E 21 3

σ
Α σ

Β

Solution:

EA =
|σA|
2ε0

= 0.40N/C (directed away from sheet A).

EB =
|σB|
2ε0

= 0.23N/C (directed toward sheet B).

E1 = EA − EB = 0.17N/C (directed left).
E2 = EA + EB = 0.63N/C (directed right).
E2 = EA − EB = 0.17N/C (directed right).
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The two parallel sheets shown on the slide are assumed to be much larger
than the image might suggest.

They are again uniformly charged, one positively and the other negatively.
However, the charge densities, σA and σB, now have different magnitude.

We can still reason that the electric field is uniform in three regions, e.g. at
the three field points indicated.

We first calculate the magnitude of the (uniform) fields EA and EB generated
by the two sheets individually. The directions are away from the positively
charged sheet and toward the negatively charged sheet.

In each region, we superpose the two fields thus generated, adopting the
convention that a field directed right is counted positively and a field directed
left is counted negatively.

Note that the field generated by sheet A is directed to the right on both sides
of sheet B but only on one side of sheet A. Likewise, the field generated by
sheet B is directed to the right on both sides of sheet A but only on one side
of sheet B.
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Unit Exam I: Problem #2 (Spring ’12)

Two very large, thin, uniformly charged, parallel sheets are positioned as shown.

Find the values of the charge densities, σA and σB, if you know the electric fields E1, E2, and E3.

Consider two situations.

(a) E1 = 2N/C (directed left), E2 = 0, E3 = 2N/C (directed right).

(b) E1 = 0, E2 = 2N/C (directed right), E3 = 0.

EE E 21 3

σ
Α σ

Β

Solution:

(a) The two sheets are equally charged:
σA = σB = 2ε0(1N/C) = 1.77 × 10−11C/m2.

(b) The two sheets are oppositely charged:
σA = −σB = 2ε0(1N/C) = 1.77 × 10−11C/m2.
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Here we have essentially the same problem in reverse. Given are direction
and magnitude of the electric field at the three field points indicated. We are
being asked to find the (uniform) surface charge densities on the two sheets.

This is a straightforward application of Gauss’s law. We use a can as Gaus-
sian surface with flat areas A positioned across one or the other sheet.

It is straightforward to determine the electric flux through the can. The only
contributions arise from the flat surfaces. They are ±E1A and ±E2A for a
can that cuts across sheet A, and ±E2A and ±E3A for a can that cuts across
sheet B. The charge inside the can is either σAA or σBA. The answers for
σA and σB are given on the slide.

Note that fields pointing toward the outside of the can produce positive flux
and fields pointing toward the inside produce negative flux.

This exercise comes with two scenarios, which are equally simple.
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Charged Conductor at Equilibrium (1)

• Consider a conductor with excess charge Q in
isolation.

• The mobile charges (electrons) are rearranged
spontaneously until we have ~E0 = 0
everywhere inside the conductor.

• If ~E0 = 0 inside the conductor, then Gauss’s
law implies that there can be no net flux
through any Gaussian surface that is inside
the conductor.

• Hence there can be no net charge in any
region inside the conductor.

• Hence all excess charge must be at the
surface, where it produces an electric field
~E0(~r) on the outside only.

E  = 0
0

Q

E0 (r)
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In metallic conductors, some electrons are shared between atoms. These con-
duction electrons can move almost freely through the conducting material.
Their motion is subject to collisions. Moving electrons represent an electric
current. The collisions bring a current to a halt and the distribution of con-
duction electrons to equilibrium, unless the electrons experience a persistent
force.

In lecture 1 we have briefly discussed how a conductor can be charged up
positively or negatively by removing or adding conduction electrons.

How is any excess charge Q distributed across a conductor when it is at
equilibrium? Mobile charges keep moving for as long as they experience an
electric field. Electrostatic equilibrium in the presence of mobile charges thus
implies zero electric field, ~E0 = 0, inside the conducting material.

If there were pockets of excess charge inside the bulk of the conductor, we
could envelop any such pocket with a Gaussian surface. That surface would
be embedded in the conducting material where there is no field. Hence there
is no flux through that surface, which, according to Gauss’s law, contradicts
the claim that the surface envelops a pocket of excess charge.

The only other place where the excess charge can be located is on the surface
of the conductor.

The equilibrium surface charge density σ on the conductor is not uniform, in
general. The excess charge generates an electric field on the outside of the
conductor. That field must be perpendicular to the surface locally, toward
the outside where σ is positive and to the inside where σ is negative.

Any tangential component of the electric field would drag mobile charge
carriers along the surface, which only happens before equilibrium has been
established.
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Charged Conductor at Equilibrium (2)

• Now place a point charge q near the charged conductor.
• The electric field produced by q causes a further rearrangement of mobile surface charges until we have

again ~E = 0 in the interior.
• Locally, the electric field ~E is perpendicular to the surface of the conductor, and its magnitude is

proportional to the charge per unit area: E = σ/ε0.

+

Q

E = 0
E(r)

q
+ + ++ + + +

tsl59

This slide makes two points. We first address the second point.

Consider a clump of conducting material as shown. There is some excess
charge Q on it, which will arrange itself spontaneously until the electric
field inside the conducting material vanishes and the electric field outside is
perpendicular to the surface everywhere.

The surface charge density σ, which may vary from point to point, is related
to the local electric field E just outside the conductor We already know that
the field is directed perpendicular to the surface.

The relation between σ and E uses a tiny Gaussian can placed as shown.
The only flux through the can comes from the exterior flat surface and has
the value EA, where E is the local field and A the area of the flat surface.
The charge inside the can is σA, where σ is the local surface charge density.
Gauss’s law thus predicts that E = σ/ε0. This last relation is generally true
for surfaces of conductors at equilibrium.

What happens if we place a point charge q next to the charged conductor as
shown? Initially, the field of the point charge will penetrate the conductor
and set the mobile charges, i.e. the conduction electrons, in motion. They
only settle down when the electric field inside the conductor vanishes again.
The excess charge Q on the conductor will now be differently distributed
across the surface. However, the field just outside the conductor will again
be perpendicular to the surface and the relation E = σ/ε0 between field and
surface charge density will hold again.
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Charged Conductor at Equilibrium (3)

• Consider a conductor with a cavity and excess charge Q.
• Gauss’s law implies that there is no net charge on the surface of the cavity.
• The external field is ~E0(~r). There is no field in the cavity.
• Now place a point charge q inside the cavity.
• Gauss’s law implies that there is a charge −q on the surface of the cavity.
• Charge conservation implies that there is a charge Q + q on the outer surface of the conductor.
• The external field changes to ~E(~r). There is a nonzero electric field field inside the cavity.

+

Q

E = 0 E = 0

−q

Q+q

E = 0 q

E (r) E(r)0
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What if a conductor has more than one surface such as is the case if the
conductor has cavities? Cavities are surrounded by inside surfaces. We shall
reason that all excess charge goes to the outside surface if the cavities are
empty. There is no charge on inside surfaces then.

We have not yet developed all the tools to make the argument water tight, but
we can show that the net charge on any inside surface is zero. We surround
any of the cavities by a Gaussian surface that is embedded in the conducting
material, where there is no electric field. Hence the electric flux through that
surface vanishes, which implies that the net charge inside is zero. The only
conceivable place for charge inside would have been on the cavity wall.

Our reasoning thus far does not rule out regions of positive and of negative
surface charge that add up to zero net charge on the cavity surface. We
will be able to complete the argument at the end of the next chapter (a
few lectures down the line) and show that the surface charge density is zero
across the surface of all empty cavities, which has the consequence that there
is no electric field in such cavities.

The situation changes when we place a charge into the cavity, for example, a
charged particle with positive charge q as shown on the slide. This induces a
surface charge −q on the cavity wall as required by Gauss’s law. We use the
same Gaussian surface embedded in the conducting material and surrounding
the cavity to make this point. We reason from no field to no flux to no net
charge inside as before. Here no net charge means q + (−q) = 0.

Another effect is that the charge on the outer surface of the conductor changes
as well, namely from Q to Q+ q. Placing the charged particle into the cavity
must not change the total charge on the conductor. It was Q and remains Q,
now split between Q+ q on the outer surface and −q on the cavity surface.
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Charged Conductor Problem (1)

Consider a metal cube with a charge 2C on it positioned inside a cubic metal shell with a charge −1C on it.

• Find the charge Qint on the interior surface and the charge Qext on the exterior surface of the shell.

2C

−1C

Q
int Q ext
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The next lecture will feature applications of Gauss’s law to conductors at
equilibrium in various configurations. Here is a sample of what’s coming.

The slide shows (in cross section) a metal cube surrounded by a metal cubic
shell. Both conductors have been charged up. The cube carries a charge
Qc = +2C and the shell a charge Qs = −1C.

From what we have learned thus far, we know that the charge Qc is located
on the surface of the cube. It is not evenly distributed across the surface but
none of that charge is in the interior of the cube.

The shell has two surfaces. The question is how the charge Qs is distributed
between the the interior and exterior surfaces.

The trick is to apply Gauss’s law by employing a Gaussian surface such that
the inside only contains one unknown charge. That means, in this instance,
that we imagine a Gaussian surface in the shape of a cube such that it is
embedded in the shell.

The electric flux through that Gaussian cube is zero because there is no
electric field inside the conducting material. Hence the net charge inside the
Gaussian cube must be zero as well, says Gauss’s law.

Inside the Gaussian cube we have the known charge Qc = +2C on the cube
and the unknown charge Qint on the inside surface of the shell. They have
to add up to zero, which implies that Qint = −Qc = −2C.

Given the total charge Qs = −1C on the shell and the fraction Qint = −2C
of it on its inside surface, we conclude that the remainder is on the outside
surface, the only other place where it can be: Qext = +1C.
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Electric Field Near Charged Infinite Sheets

Consider three pairs of parallel, infinite, uniformly charged sheets.

The charge per unit area is equal in magnitude on all sheets.

Find the direction (↑, ↓, none) of the electric field at the nine locations indicated.

σ > 0

σ > 0σ < 0

σ < 0 σ < 0

E

E

E E

E

E

E

E

E

1

2

3

4

5

6

7

8

9

σ > 0
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This is the quiz for lecture 6.

We return to pairs of large, uniformly charged sheets positioned parallel to
each other as shown in three configurations from left to right on the slide.
Positively and negatively charged sheets are color coded.

Both sheets in each configuration generate an electric field in vertical direc-
tion, either up or down, away from the sheet if σ is positive and toward the
sheet if σ is negative.

Find the direction of the resultant field at the field points marked E1, . . . E9.
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