Electricity and Magnetism

Electricity

- Electric charges generate an electric field.
- The electric field exerts a force on other electric charges.

Magnetism

- Electric currents generate a magnetic field.
- The magnetic field exerts force on other electric currents.

Sources of Electric and Magnetic Fields

Capacitor

The parallel-plate capacitor generates a near uniform electric field provided the linear dimensions of the plates are large compared to the distance between them.

Solenoid

The solenoid (a tightly wound cylindrical coil) generates a near uniform magnetic field provided the length of the coil is large compared to its radius.

Electric and Magnetic Forces on Point Charge

Electric Force

- $\vec{F} = q\vec{E}$
- electric force is parallel to electric field
- SI unit of E: 1N/C=1V/m

Magnetic Force

- $\vec{F} = q\vec{v} \times \vec{B}$, $F = qvB\sin\phi$
- magnetic force is perpendicular to magnetic field
- SI unit of B: 1Ns/Cm=1T (Tesla)
- 1T=10⁴G (Gauss)

Magnetic Force on Current-Carrying Conductor

Consider drift of Na⁺ and Cl⁻ ions in a plastic pipe filled with salt water.

- $v_{1x} > 0$, $v_{2x} < 0$: drift velocities; $q_1 > 0$, $q_2 < 0$: charge on ions
- n_1 , n_2 : number of charge carriers per unit volume

- Electric current through A: $I = A(n_1q_1v_{1x} + n_2q_2v_{2x})$
- Force on Na $^+$: $ec F_1 = q_1 ec v_1 imes ec B \ \Rightarrow \ F_{1z} = q_1 v_{1x} B_y$
- Force on Cl $^-$: $\vec{F}_2=q_2\vec{v}_2 imes \vec{B} \ \Rightarrow \ F_{2z}=q_2v_{2x}B_y$
- Force on current-carrying pipe: $F_z = (n_1q_1v_{1x} + n_2q_2v_{2x})ALB_y = ILB_y$
- Vector relation: $\vec{F} = I\vec{L} \times \vec{B}$

Direction of Magnetic Force (1)

$$\vec{F} = I\vec{L} \times \vec{B}$$

Direction of Magnetic Force (2)

$$\vec{F} = I\vec{L} \times \vec{B}$$

Magnetic Force Application (1)

A wire of length $L=62\mathrm{cm}$ and mass $m=13\mathrm{g}$ is suspended by a pair of flexible leads in a uniform magnetic field $B=0.440\mathrm{T}$ pointing in to the plane.

 What are the magnitude and direction of the current required to remove the tension in the supporting leads?

Magnetic Force Application (2)

A metal wire of mass m=1.5kg slides without friction on two horizontal rails spaced a distance d=3m apart.

The track lies in a vertical uniform magnetic field of magnitude $B=24\mathrm{mT}$ pointing out of the plane.

A constant current I=12A flows from a battery along one rail, across the wire, and back down the other rail. The wire starts moving from rest at t=0.

ullet Find the direction and magnitude of the velocity of the wire at time $t=5\mathrm{s}$.

Magnetic Force on Semicircular Current (1)

Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment ds: $dF = IBds = IBRd\theta$.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.
- $F_x = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR$, $F_y = IBR \int_0^{\pi} \cos \theta d\theta = 0$.

Magnetic Force on Semicircular Current (2)

Clever solution:

- Replace the semicircle by symmetric staircase of tiny wire segments.
- Half the vertical segments experience a force to the left, the other half a force to the right. The resultant horizontal force is zero.
- All horizontal segments experience a downward force. The total length is 2R.
 The total downward force is 2IBR.
- · Making the segments infinitesimally small does not change the result.

Magnetic Force Application (5)

Inside the cube there is a magnetic field \vec{B} directed vertically up.

Find the direction of the magnetic force experienced by a proton entering the cube

- (a) from the left,
- (b) from the front,
- (c) from the right,
- (d) from the top.

Charged Particle Moving in Uniform Electric Field

- Electric field \vec{E} is directed up.
- Electric force: $\vec{F} = q\vec{E}$ (constant)
- Acceleration: $\vec{a} = \frac{\vec{F}}{m} = \frac{q}{m}\vec{E} = \text{const.}$
- Horizontal motion: $a_x = 0 \implies v_x(t) = v_0 \implies x(t) = v_0 t$
- Vertical motion: $a_y = \frac{q}{m}E \implies v_y(t) = a_y t \implies y(t) = \frac{1}{2}a_y t^2$
- The path is parabolic: $y = \left(\frac{qE}{2mv_0^2}\right)x^2$
- \vec{F} changes direction and magnitude of \vec{v} .

Charged Particle Moving in Uniform Magnetic Field

- Magnetic field \vec{B} is directed into plane.
- Magnetic force: $\vec{F} = q \vec{v} \times \vec{B}$ (not constant)
- $\vec{F} \perp \vec{v} \ \Rightarrow \ \vec{F}$ changes direction of \vec{v} only $\ \Rightarrow \ v = v_0$.
- \vec{F} is the centripetal force of motion along circular path.
- Radius: $\frac{mv^2}{r} = qvB \implies r = \frac{mv}{qB}$
- Angular velocity: $\omega = \frac{v}{r} = \frac{qB}{m}$
- Period: $T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}$

Velocity Selector

A charged particle is moving horizontally into a region with "crossed" uniform fields:

- an electric field \vec{E} pointing down,
- a magnetic field \vec{B} pointing into the plane.

Forces experienced by particle:

- electric force F = qE pointing down,
- magnetic force B = qvB pointing up.

Forces in balance: qE = qvB.

Selected velocity:
$$v = \frac{E}{B}$$
.

Trajectories of particles with selected velocity are not bent.

Measurement of e/m_e for Electron

First experiment by J. J. Thomson (1897)

Method used here: velocity selector

Equilibrium of forces:
$$eE = evB$$
 $\Rightarrow v = \frac{E}{B}$

Work-energy relation:
$$eV = \frac{1}{2}m_ev^2 \quad \Rightarrow \ v = \sqrt{\frac{2eV}{m_e}}$$

Eliminate
$$v$$
: $\frac{e}{m_e} = \frac{E^2}{2VB^2} \simeq 1.76 \times 10^{11} \text{C/kg}$

Measurement of e and m_e for Electron

First experiment by R. Millikan (1913)

Method used here: balancing weight and electric force on oil drop

Radius of oil drop: $r = 1.64 \mu m$

Mass density of oil: $ho = 0.851 \mathrm{g/cm^3}$

Electric field: $E = 1.92 \times 10^5 \text{N/C}$

Mass of oil drop:
$$m=rac{4\pi}{3}r^3
ho=1.57 imes10^{-14}{
m kg}$$

Equilibrium of forces: neE = mg

Quantized quantity:
$$\frac{mg}{E} = ne$$
.

Number of excess elementary charges: n = 5

Elementary charge:
$$e = \frac{mg}{nE} \simeq 1.6 \times 10^{-19} \text{C}$$

Use result from J. J. Thomson: $rac{e}{m_e} \simeq 1.76 imes 10^{11} {
m C/kg}$

Mass of electron: $m_e \simeq 9.1 \times 10^{-31} \mathrm{kg}$

Mass Spectrometer

Purpose: measuring masses of ions.

- Charged particle is accelerated by moving through potential difference $|\Delta V|$.
- Trajectory is then bent into semicircle of radius r by magnetic field \vec{B} .

• Kinetic energy:
$$\frac{1}{2}mv^2 = q|\Delta V|$$
.

• Radius of trajectory:
$$r = \frac{mv}{qB}$$
.

• Charge:
$$q = e$$

• Mass:
$$m=rac{eB^2r^2}{2|\Delta V|}.$$

Cyclotron

Purpose: accelerate charged particles to high energy.

- Low-energy protons are injected at *S*.
- Path is bent by magnetic field \vec{B} .
- Proton is energized by alternating voltage ΔV between Dee_1 and Dee_2 .
- Proton picks up energy $\Delta K = e \Delta V$ during each half cycle.
- Path spirals out as velocity of particle increases: Radial distance is proportional to velocity: $r = \frac{mv}{eB}$.
- Duration of cycle stays is independent of r or v: cyclotron period: $T = \frac{2\pi m}{e^R}$.

- High-energy protons exit at perimeter of $\vec{\textit{B}}\textsc{-field}$ region.

Magnetic Bottles

Moving charged particle confined by inhomogeneous magnetic field.

Van Allen belt: trapped protons and electrons in Earth's magnetic field.

Loudspeaker

Conversion of electric signal into mechanical vibration.

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Solution:

(a) Use the right-hand rule: positive x-direction (front, out of page).

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Solution:

- (a) Use the right-hand rule: positive x-direction (front, out of page).
- (b) $F = qvB\sin 30^\circ = (5 \times 10^{-9} \text{C})(3\text{m/s})(4 \times 10^{-3} \text{T})(0.5) = 3 \times 10^{-11} \text{N}.$

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \, \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Solution:

(a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \, \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Solution:

- (a) $\vec{F}_1 = I \vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).
- (b) $F_2 = ILB = (0.4 \text{A})(0.2 \text{m})(30 \times 10^{-3} \text{T}) = 2.4 \times 10^{-3} \text{N}.$ Direction of \vec{F}_2 : \otimes (into plane).

Magnetic Force Application (3)

The dashed rectangle marks a region of uniform magnetic field \vec{B} pointing out of the plane.

ullet Find the direction of the magnetic force acting on each loop with a ccw current I.

