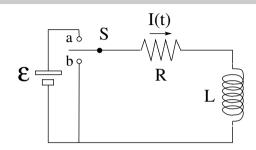
RL Circuit: Fundamentals

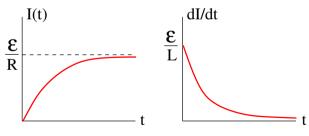


Specifications:

- • E (emf)
- R (resistance)
- L (inductance)

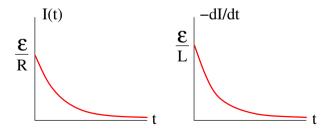
Switch S:

- a: current buildup
- · b: current shutdown


Time-dependent quantities:

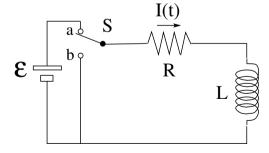
- $oldsymbol{\cdot}\ I(t)$: instantaneous current through inductor
- $\frac{dI}{dt}$: rate of change of instantaneous current
- $V_R(t) = I(t)R$: instantaneous voltage across resistor
- $V_L(t) = L \frac{dI}{dt}$: instantaneous voltage across inductor

RL Circuit: Current Buildup in Inductor


- Loop rule: $\mathcal{E} IR L \frac{dI}{dt} = 0$
- Differential equation: $L\frac{dI}{dt} = \mathcal{E} IR \quad \Rightarrow \frac{dI}{dt} = \frac{\mathcal{E}/R I}{L/R}$ $\int_0^I \frac{dI}{\mathcal{E}/R I} = \int_0^t \frac{dt}{L/R} \quad \Rightarrow \quad -\ln\left(\frac{\mathcal{E}/R I}{\mathcal{E}/R}\right) = \frac{t}{L/R} \quad \Rightarrow \quad \frac{\mathcal{E}/R I}{\mathcal{E}/R} = e^{-Rt/L}$
- Current through inductor: $I(t) = \frac{\mathcal{E}}{R} \left[1 e^{-Rt/L} \right]$
- Rate of current change: $\frac{dI}{dt} = \frac{\mathcal{E}}{L} \; e^{-Rt/L}$

RL Circuit: Current Shutdown in Inductor

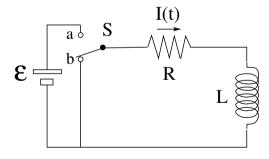
- Loop rule: $-IR L\frac{dI}{dt} = 0$
- Differential equation: $L \frac{dI}{dt} + IR = 0 \Rightarrow \frac{dI}{dt} = -\frac{R}{L}I$ $\Rightarrow \int_{\mathcal{E}/R}^{I} \frac{dI}{I} = -\frac{R}{L} \int_{0}^{t} dt \Rightarrow \ln \frac{I}{\mathcal{E}/R} = -\frac{R}{L}t \Rightarrow \frac{I}{\mathcal{E}/R} = e^{-Rt/L}$
- Current: $I(t) = \frac{\mathcal{E}}{R} \; e^{-Rt/L}$
- Rate of current change: $\frac{dI}{dt} = -\frac{\mathcal{E}}{L} \; e^{-Rt/L}$


RL Circuit: Energy Transfer During Current Buildup

Loop rule:
$$IR + L\frac{dI}{dt} = \mathcal{E}$$
 $(I > 0, \frac{dI}{dt} > 0)$

- IE : rate at which EMF source delivers energy
- $IV_R = I^2R$: rate at which energy is dissipated in resistor
- $IV_L = LI \frac{dI}{dt}$: rate at which energy is stored in inductor

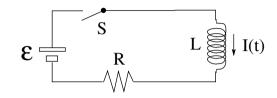
Balance of energy transfer: $I^2R + LI\frac{dI}{dt} = I\mathcal{E}$


RL Circuit: Energy Transfer During Current Shutdown

Loop rule:
$$IR + L\frac{dI}{dt} = 0$$
 $(I > 0, \frac{dI}{dt} < 0)$

- $IV_L = LI \frac{dI}{dt}$: rate at which inductor releases energy
- $IV_R = I^2R$: rate at which energy is dissipated in resistor

Balance of energy transfer: $I^2R + LI\frac{dI}{dt} = 0$

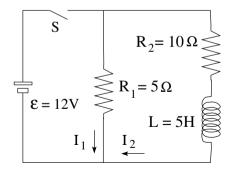


RL Circuit: Some Physical Properties

Specification of *RL* circuit by 3 device properties:

- • E [V] (emf)
- R $[\Omega]$ (resistance)
- L [H] (inductance)

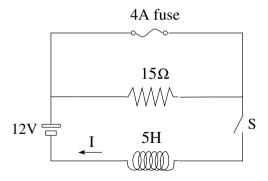
Physical properties of RL circuit during current buildup determined by 3 combinations of the device properties:


- $oldsymbol{\cdot} \left. rac{\mathcal{E}}{L} = \left. rac{dI}{dt} \right|_{t=0}$: initial rate at which current increases
- $\frac{\mathcal{E}}{R} = I(t = \infty)$: final value of current
- $L/R=\tau$: time it takes to build up 63% of the current through the circuit $[1-e^{-1}=0.632\ldots]$

RL Circuit: Application (8)

In the circuit shown the switch has been open for a long time. Find the currents ${\it I}_1$ and ${\it I}_2$

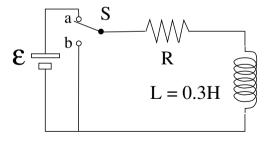
- · just after the switch has been closed,
- · a long time later,
- as functions of time for $0 < t < \infty$.



RL Circuit: Application (7)

In the circuit shown the switch S is closed at time t = 0.

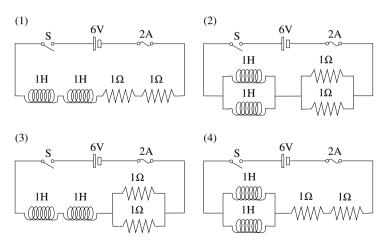
- (a) Find the current I as a function of time for $0 < t < t_F$, where t_F marks the instant the fuse breaks.
- (b) Find the current I as a function of time for $t > t_F$.



RL Circuit: Application (6)

In the RL circuit shown the switch has been at position a for a long time and is thrown to position b at time t=0. At that instant the current has the value $I_0=0.7A$ and decreases at the rate dI/dt=-360A/s.

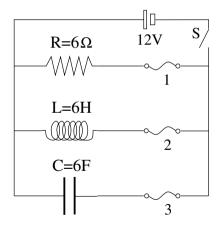
- (a) Find the EMF ${\cal E}$ of the battery.
- (b) Find the resistance R of the resistor.
- (c) At what time t_1 has the current decreased to the value $I_1=0.2$ A?
- (d) Find the voltage across the inductor at time t_1 .



RL Circuit: Application (5)

Each RL circuit contains a 2A fuse. The switches are closed at t=0.

• In what sequence are the fuses blown?



RL Circuit: Application (1)

Each branch in the circuit shown contains a 3A fuse. The switch is closed at time t=0.

- (a) Which fuse is blown in the shortest time?
- (b) Which fuse lasts the longest time?

