Mechanical Oscillator

- law of motion: F = ma, $a = \frac{d^2x}{dt^2}$
- law of force: F = -kx
- equation of motion: $\frac{d^2x}{dt^2} = -\frac{k}{m}x$
- displacement: $x(t) = x_{max} \cos(\omega t)$
- velocity: $v(t) = -\omega x_{max} \sin(\omega t)$
- angular frequency: $\omega = \sqrt{\frac{k}{m}}$
- kinetic energy: $K = \frac{1}{2}mv^2$
- potential energy: $U = \frac{1}{2}kx^2$
- total energy: E = K + U = const.

Electromagnetic Oscillator (LC Circuit)

- loop rule: $\frac{Q}{C} + L\frac{dI}{dt} = 0$, $I = \frac{dQ}{dt}$
- equation of motion: $\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q$
- charge on capacitor: $Q(t) = Q_{max} \cos(\omega t)$
- current through inductor: $I(t) = -\omega Q_{max} \sin(\omega t)$
- angular frequency: $\omega = \frac{1}{\sqrt{LC}}$
- magnetic energy: $U_B = \frac{1}{2}LI^2$ (stored on inductor)
- electric energy: $U_E = \frac{Q^2}{2C}$ (stored on capacitor)
- total energy: $E = U_B + U_E = \text{const.}$

Mechanical vs Electromagnetic Oscillations

mechanical oscillations

• position:
$$x(t) = A\cos(\omega t)$$
 [red]

• velocity:
$$v(t) = -A\sin(\omega t)$$
 [green]

• period:
$$\tau = \frac{2\pi}{\omega}$$
, $\omega = \sqrt{\frac{k}{m}}$

electromagnetic oscillations

• charge:
$$Q(t) = A\cos(\omega t)$$
 [red]

• current:
$$I(t) = -A\sin(\omega t)$$
 [green]

• period:
$$\tau = \frac{2\pi}{\omega}$$
, $\omega = \frac{1}{\sqrt{LC}}$

• potential energy:
$$U(t) = \frac{1}{2}kx^2(t)$$
 [r]

• kinetic energy:
$$K(t) = \frac{1}{2}mv^2(t)$$
 [g]

• total energy:
$$E = U(t) + K(t) = \text{const}$$

• electric energy:
$$U_E(t) = \frac{1}{2C}Q^2(t)$$
 [r]

• magnetic energy:
$$U_B(t) = \frac{1}{2}LI^2(t)$$
 [g]

• total energy:
$$E = U_E(t) + U_B(t) = \text{const}$$

Mechanical Oscillator with Damping

• law of motion:
$$F = ma$$
, $a = \frac{d^2x}{dt^2}$

• law of force:
$$F = -kx - bv$$
, $v = \frac{dx}{dt}$

• equation of motion:
$$\frac{d^2x}{dt^2} + \frac{b}{m} \frac{dx}{dt} + \frac{k}{m} x = 0$$

Solution for initial conditions x(0) = A, v(0) = 0:

(a) underdamped motion: $b^2 < 4km$

$$x(t) = Ae^{-bt/2m} \left[\cos(\omega' t) + \frac{b}{2m\omega'} \sin(\omega' t) \right]$$
 with $\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$

(b) overdamped motion: $b^2 > 4km$

$$x(t) = Ae^{-bt/2m} \left[\cosh(\Omega't) + \frac{b}{2m\Omega'} \sinh(\Omega't) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}$$

Damped Electromagnetic Oscillator (RLC Circuit)

• loop rule:
$$RI + L\frac{dI}{dt} + \frac{Q}{C} = 0$$
, $I = \frac{dQ}{dt}$

• equation of motion:
$$\frac{d^2Q}{dt^2} + \frac{R}{L} \, \frac{dQ}{dt} + \frac{1}{LC}Q = 0$$

Solution for initial conditions $Q(0) = Q_{max}$, I(0) = 0:

(a) underdamped motion:
$$R^2 < \frac{4L}{C}$$

$$Q(t) = Q_{max} e^{-Rt/2L} \left[\cos(\omega' t) + \frac{R}{2L\omega'} \sin(\omega' t) \right] \quad \text{with} \quad \omega' = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

(b) overdamped motion:
$$R^2 > \frac{4L}{C}$$

$$Q(t) = Q_{max} e^{-Rt/2L} \left[\cosh(\Omega' t) + \frac{R}{2L\Omega'} \sinh(\Omega' t) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}$$

Oscillator with Two Modes

Electromagnetic:

$$\begin{aligned} &\text{mode \#1: } L\frac{dI}{dt} + \frac{Q}{C} + \frac{Q}{C} + L\frac{dI}{dt} = 0, \quad I = \frac{dQ}{dt} \\ &\Rightarrow \frac{dI}{dt} = -\frac{Q}{LC} \quad \Rightarrow \frac{d^2Q}{dt^2} = -\omega^2Q, \quad \omega = \frac{1}{\sqrt{LC}} \end{aligned}$$

$$\begin{split} &\text{mode #2: } L\frac{dI}{dt} + \frac{Q}{C} + \frac{2Q}{C} = 0, \quad I = \frac{dQ}{dt} \\ &\Rightarrow \frac{dI}{dt} = -\frac{3Q}{LC} \quad \Rightarrow \frac{d^2Q}{dt^2} = -\omega^2Q, \quad \omega = \sqrt{\frac{3}{LC}} \end{split}$$

Mechanical:

mode #1:
$$\omega = \sqrt{\frac{k}{m}}$$

mode #2:
$$\omega = \sqrt{\frac{3k}{m}}$$

RLC Circuit: Application (1)

In the circuit shown the capacitor is without charge.

When the switch is closed to position *a*...

- (a) find the initial rate dI/dt at which the current increases from zero,
- (b) find the charge Q on the capacitor after a long time.

Then, when the switch is thrown from a to b...

- (c) find the time t_1 it takes the capacitor to fully discharge,
- (d) find the maximum current I_{max} in the process of discharging.

RLC Circuit: Application (2)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position b we have an RL circuit with the current building up gradually: $I(t) = (\mathcal{E}/R)[1 - e^{-t/\tau}].$

Find the time constant τ and the current I_{max} after a long time.

(ii) Then we reset the clock and move the switch from b to c with no interruption of the current through the inductor. We now have a an LC circuit: $I(t) = I_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum charge Q_{max} that goes onto the capacitor periodically.

RLC Circuit: Application (3)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position b we have an RC circuit with the capacitor being charged up gradually: $Q(t) = \mathcal{E}C[1 - e^{-t/\tau}]$.

Find the time constant τ and the charge Q_{max} after a long time.

(ii) Then we reset the clock and move the switch from b to c.

We now have a an LC circuit: $Q(t) = Q_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum current I_{max} that flows through the inductor periodically.

LC Circuit: Application (1)

Name the LC circuit with the highest and the lowest angular frequency of oscillation.

LC Circuit: Application (2)

At time t=0 a charge Q=2C is on each capacitor and all currents are zero.

- (a) What is the energy stored in the circuit?
- (b) At what time t_1 are the capacitors discharged for the first time?
- (c) What is the current through each inductor at time t_1 ?

LC Circuit: Application (3)

In these LC circuits all capacitors have equal capacitance C and all inductors have equal inductance L. Sort the circuits into groups that are equivalent.

