### **Alternating Current Generator**



Coil of N turns and cross-sectional area A rotating with angular frequency  $\omega$  in uniform magnetic field  $\vec{B}.$ 

- Angle between area vector and magnetic field vector:  $\theta = \omega t$ .
- Flux through coil:  $\Phi_B = NBA\cos(\omega t)$ .
- Induced EMF:  $\mathcal{E} = -\frac{d\Phi_B}{dt} = \mathcal{E}_{max}\sin(\omega t)$  with amplitude  $\mathcal{E}_{max} = NBA\omega$ .
- · U.S. household outlet values:
  - $\mathcal{E}_{max} = 120 \text{V} \sqrt{2} \simeq 170 \text{V}$
  - $f=60 {
    m Hz}, \quad \omega=2\pi f \simeq 377 {
    m rad/s}.$



### **Single Device in AC Circuit: Resistor**



Voltage of ac source :  $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through device:  $I = I_{max} \cos(\omega t - \delta)$ 

### Resistor

$$V_R = RI = \mathcal{E}_{max} \cos \omega t \implies I = \frac{\mathcal{E}_{max}}{R} \cos \omega t$$

amplitude: 
$$I_{max}=rac{\mathcal{E}_{max}}{R}$$
, phase angle:  $\delta=0$ 

impedance: 
$$X_R \equiv \frac{\mathcal{E}_{max}}{I_{max}} = R$$
 (resistance)







### **Single Device in AC Circuit: Inductor**



Voltage of ac source :  $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through device:  $I = I_{max} \cos(\omega t - \delta)$ 

### Inductor

$$V_L = L \frac{dI}{dt} = \mathcal{E}_{max} \cos \omega t \implies I = \frac{\mathcal{E}_{max}}{\omega L} \sin(\omega t)$$

amplitude: 
$$I_{max}=rac{\mathcal{E}_{max}}{\omega L}$$
, phase angle:  $\delta=rac{\pi}{2}$ 

impedance: 
$$X_L \equiv \frac{\mathcal{E}_{max}}{I_{max}} = \omega L$$
 (inductive reactance)





# Single Device in AC Circuit: Capacitor



Voltage of ac source :  $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ 

Current through device:  $I = I_{max} \cos(\omega t - \delta)$ 

### **Capacitor**

$$V_C = \frac{Q}{C} = \mathcal{E}_{max} \cos \omega t \implies I = \frac{dQ}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t)$$

amplitude:  $I_{max} = \omega C \mathcal{E}_{max}$ , phase angle:  $\delta = -\frac{\pi}{2}$ 

impedance:  $X_C \equiv \frac{\mathcal{E}_{max}}{I_{max}} = \frac{1}{\omega C}$  (capacitive reactance)







# **Single Device in AC Circuit: Application (1)**



The ac voltage source  $\mathcal{E}=\mathcal{E}_{max}\sin\omega t$  has an amplitude of  $\mathcal{E}_{max}=24\mathrm{V}$  and an angular frequency of  $\omega=10\mathrm{rad/s}$ .

In each of the three circuits, find

- (a) the current amplitude  $I_{max}$ ,
- (b) the current I at time t=1s.



# **Single Device in AC Circuit: Application (2)**



Consider an ac generator  $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$ ,  $\mathcal{E}_{max} = 25$ V,  $\omega = 377$ rad/s connected to an inductor with inductance L = 12.7H.

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is -12.5V and decreasing.
- (d) Find the power supplied by the generator at the instant described in (c).



# **Single Device in AC Circuit: Application (3)**



Consider an ac generator  $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$ ,  $\mathcal{E}_{max} = 25$ V,  $\omega = 377$ rad/s connected to a capacitor with capacitance  $C = 4.15 \mu F$ .

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is -12.5V and increasing.
- (d) Find the power supplied by the generator at the instant described in (c).



## **RLC Series Circuit (1)**



Applied alternating voltage:  $\mathcal{E} = \mathcal{E}_{\textit{max}} \cos \omega t$ 

Resulting alternating current:  $I = I_{max} \cos(\omega t - \delta)$ 

#### Goals:

- Find  $I_{max}$ ,  $\delta$  for given  $\mathcal{E}_{max}$ ,  $\omega$ .
- Find voltages  $V_R$ ,  $V_L$ ,  $V_C$  across devices.

Loop rule: 
$$\mathcal{E} - V_R - V_C - V_L = 0$$

#### Note:

- All voltages are time-dependent.
- In general, all voltages have a different phase.
- $V_R$  has the same phase as I.



### **RLC Series Circuit (2)**



Phasor diagram (for  $\omega t = \delta$ ):

### Voltage amplitudes:

• 
$$V_{R,max} = I_{max}X_R = I_{max}R$$

• 
$$V_{L,max} = I_{max}X_L = I_{max}\omega L$$

• 
$$V_{C,max} = I_{max} X_C = \frac{I_{max}}{\omega C}$$



Relation between  $\mathcal{E}_{max}$  and  $I_{max}$  from geometry:

$$\mathcal{E}_{max}^{2} = V_{R,max}^{2} + (V_{L,max} - V_{C,max})^{2}$$
$$= I_{max}^{2} \left[ R^{2} + \left( \omega L - \frac{1}{\omega C} \right)^{2} \right]$$

# **RLC Series Circuit (3)**



Impedance: 
$$Z \equiv \frac{\mathcal{E}_{max}}{I_{max}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

Current amplitude and phase angle:

• 
$$I_{max} = \frac{\mathcal{E}_{max}}{Z} = \frac{\mathcal{E}_{max}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

• 
$$\tan \delta = \frac{V_{L,max} - V_{C,max}}{V_{R,max}} = \frac{\omega L - 1/\omega C}{R}$$



Voltages across devices:

• 
$$V_R = RI = RI_{max}\cos(\omega t - \delta) = V_{R,max}\cos(\omega t - \delta)$$

• 
$$V_L = L \frac{dI}{dt} = -\omega L I_{max} \sin(\omega t - \delta) = V_{L,max} \cos\left(\omega t - \delta + \frac{\pi}{2}\right)$$

• 
$$V_C = \frac{1}{C} \int I dt = \frac{I_{max}}{\omega C} \sin(\omega t - \delta) = V_{C,max} \cos(\omega t - \delta - \frac{\pi}{2})$$

### **AC Circuit Application (1)**



In this *RLC* circuit, the voltage amplitude is  $\mathcal{E}_{max} = 100$ V.

Find the impedance Z, the current amplitude  $I_{max}$ , and the voltage amplitudes  $V_R$ ,  $V_C$ ,  $V_L$ ,  $V_{LC}$ 

- (a) for angular frequency is  $\omega=1000 {\rm rad/s}$ ,
- (b) for angular frequency is  $\omega=500 {\rm rad/s}.$



## **AC Circuit Application (2)**



In this RLC circuit, we know the voltage amplitudes  $V_R$ ,  $V_C$ ,  $V_L$  across each device, the current amplitude  $I_{max}=5$ A, and the angular frequency  $\omega=2$ rad/s.

• Find the device properties R, C, L and the voltage amplitude  $\mathcal{E}_{max}$  of the ac source.



# Impedances: RLC in Series (1)



$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

resonance at 
$$\,\omega_0=rac{1}{\sqrt{LC}}$$

$$\mathsf{limit}\ R\to 0$$

$$Z = \left| \omega L - \frac{1}{\omega C} \right|$$





# **Impedances: RLC in Series (2)**



limit  $C \to \infty$ 

$$Z = \sqrt{R^2 + (\omega L)^2}$$

limit  $L \rightarrow 0$ 

$$Z = \sqrt{R^2 + \frac{1}{(\omega C)^2}}$$









### **RLC Series Resonance (1)**



### impedance

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)}$$



#### current

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \qquad I_{max} = \frac{V_{max}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$



### phase angle

$$\delta = \frac{\omega L - 1/\omega C}{R}$$



### resonance angular frequency:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

### **RLC Series Resonance (2)**



resistor

inductor

capacitor

$$V_R^{max} = I_{max}R$$

$$V_L^{max} = I_{max}\omega L$$

$$V_C^{max} = I_{max}/\omega C$$







- relaxation times:  $\tau_{RC} = RC$ ,  $\tau_{RL} = L/R$
- angular frequencies:  $\omega_L=\frac{\omega_0}{\sqrt{1-(\omega_0\,\tau_{RC})^2/2}},\quad \omega_C=\omega_0\sqrt{1-(\omega_0\,\tau_{RC})^2/2}$
- voltages:  $V_0^{max} = V_{max} \, \omega_0 \, \tau_{RL}$ ,  $V_L^{max}(\omega_L) = V_C^{max}(\omega_C) = \frac{V_0^{max}}{\sqrt{1 (\omega_0 \, \tau_{RC})^2/4}}$

### **RLC Parallel Circuit (1)**



Applied alternating voltage:  $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ 

Resulting alternating current:  $I = I_{max} \cos(\omega t - \delta)$ 

#### Goals:

- Find  $I_{max}$ ,  $\delta$  for given  $\mathcal{E}_{max}$ ,  $\omega$ .
- Find currents  $I_R$ ,  $I_L$ ,  $I_C$  through devices.

Junction rule: 
$$I = I_R + I_L + I_C$$

#### Note:

- · All currents are time-dependent.
- In general, each current has a different phase
- $I_R$  has the same phase as  $\mathcal{E}$ .



### **RLC Parallel Circuit (2)**



Phasor diagram (for  $\omega t = \delta$ ):

### **Current amplitudes:**

$$\begin{split} & \cdot \ I_{R,max} = \frac{\mathcal{E}_{max}}{X_R} = \frac{\mathcal{E}_{max}}{R} \\ & \cdot \ I_{L,max} = \frac{\mathcal{E}_{max}}{X_L} = \frac{\mathcal{E}_{max}}{\omega L} \\ & \cdot \ I_{C,max} = \frac{\mathcal{E}_{max}}{X_C} = \mathcal{E}_{max}\omega C \end{split}$$



Relation between  $\mathcal{E}_{max}$  and  $I_{max}$  from geometry:

$$\begin{split} I_{max}^2 &= I_{R,max}^2 + (I_{L,max} - I_{C,max})^2 \\ &= \mathcal{E}_{max}^2 \left[ \frac{1}{R^2} + \left( \frac{1}{\omega L} - \omega C \right)^2 \right] \end{split}$$

## **RLC Parallel Circuit (3)**



Impedance: 
$$\frac{1}{Z} \equiv \frac{I_{max}}{\mathcal{E}_{max}} = \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}$$

Current amplitude and phase angle:

• 
$$I_{max} = \frac{\mathcal{E}_{max}}{Z} = \mathcal{E}_{max} \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}$$

• 
$$\tan \delta = \frac{I_{L,max} - I_{C,max}}{I_{R,max}} = \frac{1/\omega L - \omega C}{1/R}$$



Currents through devices:

• 
$$I_R = \frac{\mathcal{E}}{R} = \frac{\mathcal{E}_{max}}{R} \cos(\omega t) = I_{R,max} \cos(\omega t)$$

• 
$$I_L = \frac{1}{L} \int \mathcal{E}dt = \frac{\mathcal{E}_{max}}{\omega L} \sin(\omega t) = I_{L,max} \cos\left(\omega t - \frac{\pi}{2}\right)$$

• 
$$I_C = C \frac{d\mathcal{E}}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t) = I_{C,max} \cos\left(\omega t + \frac{\pi}{2}\right)$$

# Impedances: RLC in Parallel (1)



$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}$$

resonance at 
$$\,\omega_0=rac{1}{\sqrt{LC}}$$

limit 
$$R \to \infty$$

$$\frac{1}{Z} = \left| \omega C - \frac{1}{\omega L} \right|$$





## Impedances: RLC in Parallel (2)



limit  $C \rightarrow 0$ 

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \frac{1}{(\omega L)^2}}$$

 $\mathsf{limit}\ L\to\infty$ 

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + (\omega C)^2}$$





### **RLC Parallel Resonance (1)**



impedance

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}$$



current

$$I_{max} = \frac{V_{max}}{Z}$$



phase angle

$$\delta = \frac{1/\omega L - \omega C}{1/R}$$



resonance angular frequency:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

## **RLC Parallel Resonance (2)**



### resistor

$$I_R^{max} = V_{max}/R$$



#### inductor

$$I_L^{max} = V_{max}/\omega L$$



### capacitor

$$I_C^{max} = V_{max} \, \omega C$$



### currents at resonance:

$$I_R^{max} = \frac{V_{max}}{R}, \quad I_L^{max} = I_C^{max} = I_0^{max} = V_{max} \sqrt{\frac{C}{L}}.$$

## **AC Circuit Application (3)**



Find the current amplitudes  $I_1, I_2, I_3$ 

- (a) for angular frequency  $\omega=2{
  m rad/s}$ ,
- (b) for angular frequency  $\omega=4\mathrm{rad/s}$ .



## **AC Circuit Application (4)**



Given the current amplitudes  $I_1$ ,  $I_2$ ,  $I_3$  through the three branches of this RLC circuit, and given the amplitude  $\mathcal{E}_{max} = 100$ V and angular frequency  $\omega = 500$ rad/s of the ac source, find the device properties R, L, C.



### **Power in AC Circuits**



Voltage of ac source:  $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ 

Current through circuit:  $I = I_{max} \cos(\omega t - \delta)$ 

Instantaneous power supplied:  $P(t) = \mathcal{E}(t)I(t) = [\mathcal{E}_{max}\cos\omega t][I_{max}\cos(\omega t - \delta)]$ 

Use 
$$\cos(\omega t - \delta) = \cos \omega t \cos \delta + \sin \omega t \sin \delta$$

$$\Rightarrow P(t) = \mathcal{E}_{max} I_{max} [\cos^2 \omega t \cos \delta + \cos \omega t \sin \omega t \sin \delta]$$

Time averages: 
$$[\cos^2 \omega t]_{AV} = \frac{1}{2}$$
,  $[\cos \omega t \sin \omega t]_{AV} = 0$ 

Average power supplied by source:  $P_{AV} = \frac{1}{2} \mathcal{E}_{max} I_{max} \cos \delta = \mathcal{E}_{rms} I_{rms} \cos \delta$ 

Power factor:  $\cos \delta$ 





### **Transformer**



• Primary winding:  $N_1$  turns

$$V_1(t) = V_1^{(rms)} \cos(\omega t), \quad I_1(t) = I_1^{(rms)} \cos(\omega t - \delta_1)$$

• Secondary winding:  $N_2$  turns

$$V_2(t) = V_2^{(rms)} \cos(\omega t), \quad I_2(t) = I_2^{(rms)} \cos(\omega t - \delta_2)$$

- Voltage amplitude ratio:  $\dfrac{V_1^{(rms)}}{V_2^{(rms)}} = \dfrac{N_1}{N_2}$
- Power transfer:  $V_1^{(rms)}I_1^{(rms)}\cos\delta_1=V_2^{(rms)}I_2^{(rms)}\cos\delta_2$



### **AC Circuit Application (6)**



Consider an RLC series circuit with inductance L=88mH, capacitance  $C=0.94\mu$ F, and unknown resistance R.

The ac generator  $\mathcal{E}=\mathcal{E}_{max}\sin(\omega t)$  has amplitude  $\mathcal{E}_{max}=24\mathrm{V}$  and frequency  $f=930\mathrm{Hz}$ . The phase angle is  $\delta=75^\circ$ .

- (a) Find the resistance R.
- (b) Find the current amplitude  $I_{max}$ .
- (c) Find the maximum energy  $U_L^{max}$  stored in the inductor.
- (d) Find the maximum energy  $U_C^{max}$  stored in the capacitor.
- (e) Find the time  $t_1$  at which the current has its maximum value  $I_{max}$ .
- (f) Find the time  $t_2$  at which the charge on the capacitor has its maximum value  $Q_{max}$ .

### **AC Circuit Application (7)**



Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the current amplitude  $I_1$  and the voltage amplitudes  $V_1$  and  $V_2$ .
- (b) In the circuit on the right, determine the current amplitudes  $I_2$ ,  $I_3$ , and  $I_4$ .





## **AC Circuit Application (8)**



Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the maximum value of current  $I_1$  and the maximum value of voltages  $V_1$  and  $V_2$ .
- (b) In the circuit on the right, determine the maximum value of currents  $I_2$ ,  $I_3$ , and  $I_4$ .





### **AC Circuit Application (9)**



In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the resistance R of the resistor, the capacitance C of the capacitor, the impedance Z of the two devices combined, and the voltage  $\mathcal{E}_{rms}$  of the power source.
- (b) In the circuit on the right, find the capacitance C of the capacitor, the inductance L of the inductor, the impedance Z of the two devices combined, and the rms value of the current  $I_4$ .





### **AC Circuit Application (10)**



In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the capacitance C of the capacitor, the inductance L of the inductor, the impedance Z of the two devices combined, and the voltage  $\mathcal{E}_{rms}$  of the power source.
- (b) In the circuit on the right, find the capacitance C of the capacitor, the resistance R of the resistor, the impedance Z of the two devices combined, and the rms value of the current  $I_4$ .





## **AC Circuit Application (5)**



Find the current amplitudes  $I_1$ ,  $I_2$ ,  $I_3$ ,  $I_4$  in the four *RLC* circuits shown.

