Dynamics of Particles and Fields

Dynamics of Charged Particle:
- Newton’s equation of motion: F = mi.
« Lorentz force: F = g(E+73 x B).
Dynamics of Electric and Magnetic Fields:
- Gauss’ law for electric field: 74173 JdA = ei
. 0
- Gauss' law for magnetic field: 741? “dA =0.
- Faraday’s law: fl?d?: —d;%, where &5 = /Ed;L
., o o dq)g o -
« Ampeére’s law: 748 -dl = pol + yonF, where & = / E-dA.

Maxwell’s equations: 4 relations between fields (E, B) and sources (g,1).
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Gauss's Law for Electric Field hﬁiﬁﬁ'

The net electric flux @ through any closed surface is equal to the net charge Q;, inside divided by the
permittivity constant e:

Qin

fﬁdﬁ:zmk@in:? e, @p=
0

€0

with €y = 8.854 x 107 12C?2N~"'m 2

The closed surface can be real or fictitious. It is called “Gaussian surface”.
The symbol § denotes an integral over a closed surface in this context.

+ Gauss's law is a general relation between
electric charge and electric field.

+ In electrostatics: Gauss's law is equivalent
to Coulomb’s law.

+ Gauss's law is one of four Maxwell’s
equations that govern cause and effect in
electricity and magnetism.
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Gauss's Law for Magnetic Field

The net magnetic flux ®p through any closed surface is equal to zero:
§B-ai-o.
There are no magnetic charges. Magnetic field lines always close in themselves. No matter how the (closed)

Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss's laws for the electric and magnetic fields in the context of an electric
dipole (left) and a magnetic dipole (right).

i
@
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Magnetic flux and Faraday’s law

tslan

- Faraday's law: £ = —

« Magnetic field B (given)

« Surface S with perimeter loop (given)
« Surface area A (given)

- Areavector A = Aa  (my choice)

- Positive direction around perimeter: ccw

(consequence of my choice)

- Magnetic flux: @5 = /B~d;\ = /ﬁ-ﬁdA

-

. N ... dB
« Consider situation with — # 0

dt

- Induced electric field: E
« Induced EMF: £ = fﬁdz

(integral ccw around perimeter)
A0y
dt




Ampére’s Law (Restricted Version)

The circulation integral of the magnetic field B around any closed curve (loop) C is equal to the net electric
current I flowing through the loop:

7( B-dl = uole,  with jig = 47 x 10/Tm/A

The symbol § denotes an integral over a closed curve in this context.
Note: Only the component of B tangential to the loop contributes to the integral.

The positive current direction through the loop is determined by the right-hand rule.
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« Conduction current: 1.
. ddg
- Displacement current: Ip = ¢g e

« Ampére’s law: ]{B"dz =po(l+1Ip) = VUI"‘VOSO%'

Plates of
capacitor

Curve C
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Faraday’s law and Ampeére’s law

I(ﬂ, dt >o

@f *J}_Q )))L)
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Traveling Waves
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Mechanical waves travel in some medium.
Examples: sound wave, violin string, surface water wave.
While the wave propagates, the medium undergoes periodic motion.

Distinguish:

(1) direction of wave propagation,

(2) direction in which medium moves.

Transverse wave: (1) and (2) are perpendicular to each other.

Longitudinal wave: (1) and (2) are parallel to each other.

Electromagnetic waves are transversely oscillating electric and magnetic fields.
Electromagnetic waves travel in the vacuum. There is no medium.

Waves transport energy and, in some cases, information, but not the medium itself (if there is a medium).



Sinusoidal Transverse Traveling Wave

Wave function: y(x,t) = Asin(kx — wt)

k= 2771 (wave number)

+ A (wavelength)

cw= ZTH =2nf (angular frequency)

w

R

« T (period)
A w

re=TEM=T

(frequency)

(wave speed)
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Wave Equation
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+ Wave equation:

* y(x,t) = Asin(kx — wt) (displacement)

s o(x,t) = v _ —wA cos(kx — wt) (velocity)

===
%y .
ca(xt) = 5= —w?Asin(kx — wt) (acceleration)
. g—z = kA cos(kx — wt) (slope of wave form)
az
T —K2Asin(kx — wt) (curvature of wave form)

Ry/or W,

TPy R (ratio of second derivatives)

Py_ Py 4

ot? ox?2 fe— l—q

C
C




Electromagnetic Plane Wave (1)

Maxwell's equations for electric and magnetic fields in free space (no sources):

. Gauss' laws: fﬁdﬁ:o, %Fd?l:o.

« Faraday’s and Ampére’s laws: jéf dl = —d;%, fﬁ dl = yoeo%.
Consider fields of particular directions and dependence on space:
E= Ey(x, )], B = B.(x, bk.
y
Gauss' laws are then automatically satisfied. E

Use the cubic Gaussian surface to show that

« the net electric flux ®g is zero,

- the net magnetic flux ®jp is zero.
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Electromagnetic Plane Wave (2)
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« Faraday’s law, %TE .l =

« Ampére’s law, %B dl = yoe()&

_a%
) i dat '
applied to loop in (x,y)-plane becomes

d
[Ey(x +dx, t) — Ey(x, t)]dy = ngz(x, t)dxdy

3 )
= SE(h)=—2B(x) (P

dt’
applied to loop in (x,z)-plane becomes

[=Bz(x +dx, t) + Bz (x,t)]dz = poeo %Ey(x, t)dxdz

J 0
= — a—sz(x, ) = po€o aEy(x, t) (A)

y .
Bj/ﬂ
E A FX




Electromagnetic Plane Wave (3)

. - 9 )
Take partial derivatives g(F) and ﬁ(A).
9%E, , 9’E,
> S ®

9

Jx (A):

Take partial derivatives %(F) and

?B,  , B,
oz 7 ox?

c= ! (speed of light).
Veoro

Sinusoidal solution:

*+ Ey(x,t) = Epgy sin(kx — wt)
* Bz(x,t) = By sin(kx — wt)
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0%E,

o2~ otox’

0’E,  9%B,
otox

3%B, 3%B, ?E

9B, OEy
gtox 100 g

(wave equation for electric field).

9%B. 0%E,

o2~ 1% Gy

o2’

(B)  (wave equation for magnetic field).

Electric field

E -
7 2
Direction of
B / propagation

Magnetic field




Electromagnetic Plane Wave (4)

For given wave number k the angular frequency w is determined, for example by substitution of
Epax sin(kx — wt) into (E).

For given amplitude E,;,, the amplitude B, is determined, for example, by substituting E,qy sin(kx — wt) and
Biuax sin(kx — wt) into (A) or (F).

=

w Enax .
k

anx
The direction of wave propagation is determind by the Poynting vector:

ExB.

WL
Il
|-

Electric field

E -
74 ’r
/ % %/‘ % Direction of
5 / propagation

Magnetic field
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Energy Transport in Electromagnetic Plane Wave

tsl323

Fields: E,(x,t) = Emayxsin(kx — wt), Bz(x,t) = By sin(kx — wt).

Energy density: u(x,t) = %eoEj(x,t) + ;%Bg(x,t)‘ [/m3]

. . 1
Use the amplitude relations egE2,,, = €9c?B2,x = %B,ZW.

EmaxBnmx

sin? (kx — wt).
cHo ( )

1
u(x, t) = €gE2uy sin® (kx — wt) = lTB%W sin? (kx — wt) =
0
Energy transported across area A in time dt: dU(x,t) = u(x,t)Acdt. [)]

u
Y u(x,t)c = S(x,t). [W/m?]

Power transported per unit area:
Intensity (average power transported per unit area):

~  Enax B €0C c
I1=5= % == 2 = 27033”‘”' (W/m?]




Momentum Transport in Electromagnetic Plane Wave
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The momentum transported by an electromagnetic wave is proportional to the energy transported.

. S
Momentum density: -

<=

O DO .
where S = }T E x B is the Poynting vector.
0

When the wave is absorbed by a material surface it exerts an impulse Edt =

= Ap.
The resulting radiation pressure is the average force per unit area:
p _E_p _pdx_p _5_1
W T AT Adt T Adxdt V' ¢ ¢
. . . 25 21
The radiation pressure exerted by a reflected wave is twice as large: P = ~ =

)7 PG ve10c1ty Electrlc field
4 i i

Magnetic field




