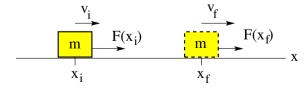
Work and Energy

Consider a block of mass m moving along the x-axis.

- Conservative force acting on block: F = F(x)
- Work done by F(x) on block: $W_{if} = \int_{x_i}^{x_f} F(x) dx$
- Kinetic energy of block: $K = \frac{1}{2}mv^2$
- Potential energy of block: $U(x) = -\int_{x_0}^x F(x)dx \Rightarrow F(x) = -\frac{dU}{dx}$
- Transformation of energy: $\Delta K \equiv K_f K_i, \ \Delta U \equiv U_f U_i$
- Total mechanical energy: $E = K + U = \text{const} \ \Rightarrow \ \Delta K + \Delta U = 0$
- Work-energy relation: $W_{if} = \Delta K = -\Delta U$



Conservative Forces in Mechanics

Conservative forces familiar from mechanics:

- Elastic force: F(x) = -kx $\Rightarrow U(x) = -\int_{x_0}^x (-kx)dx = \frac{1}{2}kx^2$ $(x_0 = 0).$
- Gravitational force (locally): F(y) = -mg

$$\Rightarrow U(y) = -\int_{y_0}^{y} (-mg)dy = mgy \qquad (y_0 = 0).$$

• Gravitational force (globally): $F(r) = -G \frac{mm_E}{r^2}$

$$\Rightarrow U(r) = -\int_{r_0}^r \left(-G \frac{mm_E}{r^2} \right) dr = -G \frac{mm_E}{r} \qquad (r_0 = \infty).$$

Potential energy depends on integration constant.

U = 0 at reference positions x_0 , y_0 , r_0 .

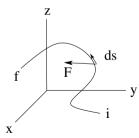
Force from potential energy: $F(x) = -\frac{d}{dx} U(x)$, $F(y) = -\frac{d}{dy} U(y)$, $F(r) = -\frac{d}{dr} U(r)$.

Work and Potential Energy in 3D Space

Consider a particle acted on by a force \vec{F} as it moves along a specific path in 3D space.

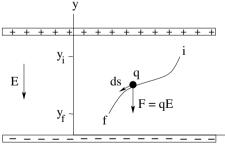
- Force: $\vec{F}(\vec{r}) = F_x(x, y, z) \,\hat{i} + F_y(x, y, z) \,\hat{j} + F_z(x, y, z) \,\hat{k}$
- Displacement: $d\vec{s} = dx\hat{i} + dy\hat{j} + dz\hat{k}$
- Potential energy: $U(\vec{r})=-\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{s}=-\int_{x_0}^x F_x dx -\int_{y_0}^y F_y dy -\int_{z_0}^z F_z dz$
- Work: $W_{if}=\int_{\vec{r}_i}^{\vec{r}_f} \vec{F} \cdot d\vec{s}=\int_{x_i}^{x_f} F_x dx + \int_{y_i}^{y_f} F_y dy + \int_{z_i}^{z_f} F_z dz$

Note: The work done by a conservative force is path-independent.



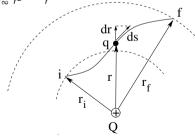
Potential Energy of Charged Particle in Uniform Electric Field

- Electrostatic force: $\vec{F} = -qE\hat{j}$ (conservative)
- Displacement: $d\vec{s} = dx\hat{i} + dy\hat{j}$
- Potential energy: $U=-\int_{ec{r}_0}^{ec{r}} ec{F} \cdot dec{s} = -\int_0^y (-qE) dy = qEy$
- Work: $W_{if}=\int_{\vec{r}_i}^{\vec{r}_f} \vec{F} \cdot d\vec{s} = \int_{y_i}^{y_f} (-qE) dy = -qE(y_f-y_i)$
- Electric potential: $V(y) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{s} = -\int_0^y (-E) dy = Ey$



Potential Energy of Charged Particle in Coulomb Field

- Electrostatic force: $\vec{F} = \frac{kqQ}{r^2}\hat{r}$ (conservative)
- Displacement: $d\vec{s} = d\vec{r} + d\vec{s}_{\perp}$, $d\vec{r} = dr\hat{r}$
- $\bullet \ \, \text{Work:} \ \, W_{if} = \int_i^f \vec{F} \cdot d\vec{s} = kqQ \int_i^f \frac{\hat{r} \cdot d\vec{s}}{r^2} = kqQ \int_{r_i}^{r_f} \frac{dr}{r^2} = kqQ \left[-\frac{1}{r} \right]_{r_i}^{r_f} = -kqQ \left[\frac{1}{r_f} \frac{1}{r_i} \right]$
- Potential energy: $U=-\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{s} = -\int_{\infty}^r F dr = -kqQ \int_{\infty}^r \frac{dr}{r^2} = k \frac{qQ}{r}$
- Electric potential: $V(r) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{s} = -\int_{\infty}^{r} E dr = -kQ \int_{\infty}^{r} \frac{dr}{r^2} = \frac{kQ}{r}$



Attributes of Space and of Charged Particles

	planar source	point source	SI unit
electric field	$\vec{E} = -E_y \hat{j}$	$\vec{E} = \frac{kQ}{r^2}\hat{r}$	[N/C]=[V/m]
electric potential	$V = E_y y$	$V = \frac{kQ}{r}$	[V]=[J/C]
electric force	$\vec{F} = q\vec{E} = -qE_y\hat{j}$	$\vec{F} = q\vec{E} = \frac{kQq}{r^2}\hat{r}$	[N]
electric potential energy	$U = qV = qE_y y$	$U = qV = \frac{kQq}{r}$	[1]

Electric field \vec{E} is present at points in space.

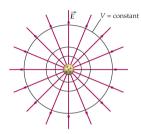
Points in space are at electric potential \it{V} .

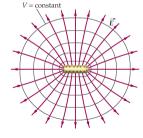
Charged particles experience electric force $\vec{F} = q\vec{E}$.

Charged particles have electric potential energy U = qV.

Equipotential Surfaces and Field Lines

- Definition: $V(\vec{r}) = \text{const on equipotential surface.}$
- Potential energy $U(\vec{r})=$ const for point charge q on equipotential surface.
- The surface of a conductor at equilibrium is an equipotential surface.
- Electric field vectors $\vec{E}(\vec{r})$ (tangents to field lines) are perpendicular to equipotential surface.
- Electrostatic force $\vec{F}=q\vec{E}(\vec{r})$ does zero work on point charge q moving on equipotential surface.
- The electric field $\vec{E}(\vec{r})$ exerts a force on a positive (negative) point charge q in the direction of steepest potential drop (rise).
- When a positive (negative) point charge q moves from a region of high potential to a region of low potential, the electric field does positive (negative) work on it. In the process, the potential energy decreases (increases).



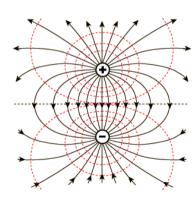


Topographic Maps

Gravitation

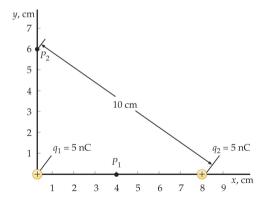
Electricity





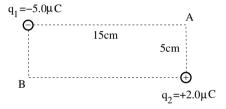
Electric Potential and Potential Energy: Application (2)

- Electric potential at point P_1 : $V = \frac{kq_1}{0.04\text{m}} + \frac{kq_2}{0.04\text{m}} = 1125\text{V} + 1125\text{V} = 2250\text{V}.$
- Electric potential at point P_2 : $V = \frac{kq_1}{0.06\text{m}} + \frac{kq_2}{0.10\text{m}} = 750\text{V} + 450\text{V} = 1200\text{V}.$



Electric Potential and Potential Energy: Application (3)

Point charges $q_1 = -5.0 \mu \text{C}$ and $q_2 = +2.0 \mu \text{C}$ are positioned at two corners of a rectangle as shown.



- (a) Find the electric potential at the corners *A* and *B*.
- (b) Find the electric field at point B.
- (c) How much work is required to move a point charge $q_3 = +3\mu C$ from B to A?

Electric Potential and Potential Energy: Application (4)

A positive point charge q is positioned in the electric field of a negative point charge Q.

- (a) In which configuration is the charge q positioned in the stronger electric field?
- (b) In which configuration does the charge q experience the stronger force?
- (c) In which configuration is the charge q positioned at the higher electric potential?
- (d) In which configuration does the charge q have the higher potential energy?

Electric Potential and Potential Energy: Application (1)

Consider a point charge $Q=2\mu C$ fixed at position x=0. A particle with mass m=2g and charge $q=-0.1\mu C$ is launched at position $x_1=10$ cm with velocity $v_1=12$ m/s.

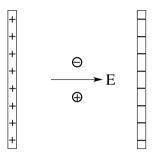
(fixed)
$$m = 2g$$

 $Q = 2\mu C$ $q = -0.1\mu C$
 $\Rightarrow v_1$
 $x = 0$ $x_1 = 10cm$ $x_2 = 20cm$

• Find the velocity v_2 of the particle when it is at position $x_2=20\mathrm{cm}$.

Electric Potential and Potential Energy: Application (5)

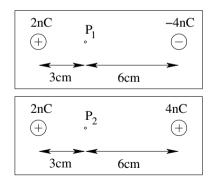
An electron and a proton are released from rest midway between oppositely charged plates.



- (a) Name the particle(s) which move(s) from high to low electric potential.
- (b) Name the particle(s) whose electric potential energy decrease(s).
- (c) Name the particle(s) which hit(s) the plate in the shortest time.
- (d) Name the particle(s) which reach(es) the highest kinetic energy before impact.

Electric Potential and Potential Energy: Application (8)

- (a) Is the electric potential at points P_1 , P_2 positive or negative or zero?
- (b) Is the potential energy of a negatively charged particle at points P_1 , P_2 positive or negative or zero?
- (c) Is the electric field at points P_1 , P_2 directed **left** or **right** or is it **zero**?
- (d) Is the force on a negatively charged particle at points P_1 and P_2 directed **left** or **right** or is it **zero?**

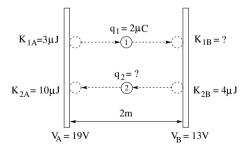


Electric Potential and Potential Energy: Application (10)

The charged particles 1 and 2 move between the charged conducting plates A and B in opposite directions.

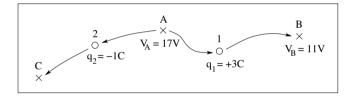
From the information given in the figure...

- (a) find the kinetic energy K_{1B} of particle 1,
- (b) find the charge q_2 of particle 2,
- (c) find the direction and magnitude of the electric field \vec{E} between the plates.



Electric Potential and Potential Energy: Application (7)

Consider a region of nonuniform electric field. Charged particles 1 and 2 start moving from rest at point A in opposite directions along the paths shown.



From the information given in the figure...

- (a) find the kinetic energy K_1 of particle 1 when it arrives at point B,
- (b) find the electric potential V_C at point C if we know that particle 2 arrives there with kinetic energy $K_2 = 8J$.

Intermediate Exam I: Problem #2 (Spring '05)

Consider a point charge Q = 5nC fixed at position x = 0.

- (a) Find the electric potential V_1 at position $x_1=3$ m and the electric potiential V_2 at position $x_2=6$ m.
- (b) If a charged particle (q=4nC, m=1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?

Q = 5nC

$$\Rightarrow$$

 $x = 0$ $x_1 = 3m$ $x_2 = 6m$

Intermediate Exam I: Problem #2 (Spring '05)

Consider a point charge Q = 5nC fixed at position x = 0.

- (a) Find the electric potential V_1 at position $x_1=3$ m and the electric potiential V_2 at position $x_2=6$ m.
- (b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?

$$Q = 5nC$$

$$+$$

$$x = 0$$

$$x_1 = 3m$$

$$x_2 = 6m$$

(a)
$$V_1 = k \frac{Q}{x_1} = 15V$$
, $V_2 = k \frac{Q}{x_2} = 7.5V$.

Intermediate Exam I: Problem #2 (Spring '05)

Consider a point charge Q = 5nC fixed at position x = 0.

- (a) Find the electric potential V_1 at position $x_1=3$ m and the electric potiential V_2 at position $x_2=6$ m.
- (b) If a charged particle (q=4nC, m=1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?

$$Q = 5nC$$

$$\oplus$$

$$x = 0$$

$$x_1 = 3m$$

$$x_2 = 6m$$

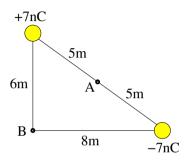
(a)
$$V_1 = k \frac{Q}{x_1} = 15V$$
, $V_2 = k \frac{Q}{x_2} = 7.5V$.

(b)
$$\Delta U = q(V_2 - V_1) = (4nC)(-7.5V) = -30nJ \Rightarrow \Delta K = -\Delta U = 30nJ.$$

 $\Delta K = K_2 = \frac{1}{2}mv_2^2 \Rightarrow v_2 = \sqrt{\frac{2K_2}{m}} = 200 \text{m/s}.$

Consider two point charges positioned as shown.

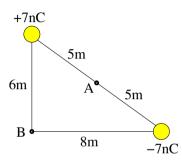
- (a) Find the magnitude of the electric field at point \boldsymbol{A} .
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.



Consider two point charges positioned as shown.

- (a) Find the magnitude of the electric field at point \boldsymbol{A} .
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point *B*.
- (d) Find the electric potential at point *B*.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

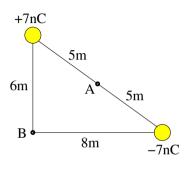


Consider two point charges positioned as shown.

- (a) Find the magnitude of the electric field at point \boldsymbol{A} .
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point *B*.
- (d) Find the electric potential at point *B*.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

(b)
$$V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$$



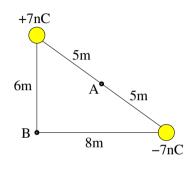
Consider two point charges positioned as shown.

- (a) Find the magnitude of the electric field at point \boldsymbol{A} .
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point *B*.
- (d) Find the electric potential at point B.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

(b)
$$V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$$

(c)
$$E_B = \sqrt{\left(k \frac{|\text{7nC}|}{(6\text{m})^2}\right)^2 + \left(k \frac{|\text{7nC}|}{(8\text{m})^2}\right)^2} \Rightarrow E_B = \sqrt{(1.75\text{V/m})^2 + (0.98\text{V/m})^2} = 2.01\text{V/m}.$$



Consider two point charges positioned as shown.

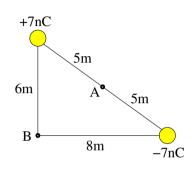
- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point *B*.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

(b)
$$V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$$

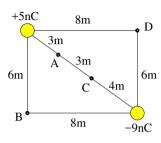
(c)
$$E_B = \sqrt{\left(k\frac{|7nC|}{(6m)^2}\right)^2 + \left(k\frac{|7nC|}{(8m)^2}\right)^2} \Rightarrow E_B = \sqrt{(1.75V/m)^2 + (0.98V/m)^2} = 2.01V/m.$$

(d)
$$V_B = k \frac{(+7\text{nC})}{6\text{m}} + k \frac{(-7\text{nC})}{8\text{m}} = 10.5\text{V} - 7.9\text{V} = 2.6\text{V}.$$



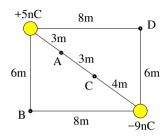
Consider two point charges positioned as shown.

- Find the magnitude of the electric field at point A.
- Find the electric potential at point ${\it B}$.
- Find the magnitude of the electric field at point ${\it C.}$
- Find the electric potential at point ${\it D}.$



Consider two point charges positioned as shown.

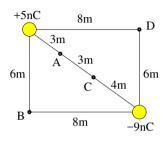
- Find the magnitude of the electric field at point A.
- Find the electric potential at point B.
- Find the magnitude of the electric field at point *C*.
- Find the electric potential at point \mathcal{D} .



•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

Consider two point charges positioned as shown.

- Find the magnitude of the electric field at point A.
- Find the electric potential at point B.
- Find the magnitude of the electric field at point *C*.
- Find the electric potential at point ${\it D}.$

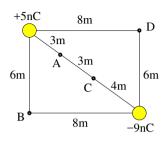


•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

•
$$V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50V - 10.13V = -2.63V.$$

Consider two point charges positioned as shown.

- Find the magnitude of the electric field at point A.
- Find the electric potential at point B.
- Find the magnitude of the electric field at point *C*.
- Find the electric potential at point ${\it D}.$



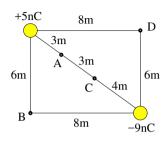
•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

•
$$V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50V - 10.13V = -2.63V.$$

•
$$E_C = k \frac{|5nC|}{(6m)^2} + k \frac{|-9nC|}{(4m)^2} = 1.25 \text{V/m} + 5.06 \text{V/m} = 6.31 \text{V/m}.$$

Consider two point charges positioned as shown.

- ullet Find the magnitude of the electric field at point A.
- Find the electric potential at point B.
- Find the magnitude of the electric field at point *C*.
- Find the electric potential at point \mathcal{D} .



•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00V/m + 1.65V/m = 6.65V/m.$$

•
$$V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50V - 10.13V = -2.63V.$$

•
$$E_C = k \frac{|5nC|}{(6m)^2} + k \frac{|-9nC|}{(4m)^2} = 1.25 \text{V/m} + 5.06 \text{V/m} = 6.31 \text{V/m}.$$

•
$$V_D = k \frac{(+5nC)}{8m} + k \frac{(-9nC)}{6m} = 5.63V - 13.5V = -7.87V.$$