Capacitor with Dielectric

Most capacitors have a dielectric (insulating solid or liquid material) in the space between the conductors. This has several advantages:

- Physical separation of the conductors.
- · Prevention of dielectric breakdown.
- · Enhancement of capacitance.

The dielectric is polarized by the electric field between the capacitor plates.

Parallel-Plate Capacitor with Dielectric (1)

The polarization produces a bound charge on the surface of the dielectric.

The bound surface charge has the effect of reducing the electric field between the plates from \vec{E}_0 to \vec{E} .

- A: area of plates
- \cdot d: separation between plates
- $\pm q_f$: free charge on plate

- $\pm q_b$: bound charge on surface of dielectric
- \vec{E}_0 : electric field in vacuum
- \vec{E} : electric field in dielectric

Parallel-Plate Capacitor with Dielectric (2)

Use Gauss' law to determine the electric fields \vec{E}_0 and \vec{E} .

- Field in vacuum: $E_0A = \frac{q_f}{\epsilon_0} \quad \Rightarrow \quad E_0 = \frac{q_f}{\epsilon_0 A}$
- Field in dielectric: $EA=rac{q_f-q_b}{\epsilon_0} \quad \Rightarrow \quad E=rac{q_f-q_b}{\epsilon_0 A} < E_0$
- Voltage: $V_0 = E_0 d$ (vacuum), $V = E d = rac{V_0}{\kappa} < V_0$ (dielectric)

 $\mbox{Dielectric constant: } \kappa \equiv \frac{E_0}{E} = \frac{q_f}{q_f - q_b} > 1. \ \ \, \mbox{Permittivity of dielectric: } \epsilon = \kappa \epsilon_0.$

Dielectric Materials

TABLE 24-1

Dielectric Constants and Dielectric Strengths of Various Materials

Material	Dielectric Constant κ	Dielectric Strength, kV/mm
Air	1.00059	3
Bakelite	4.9	24
Glass (Pyrex)	5.6	14
Mica	5.4	10-100
Neoprene	6.9	12
Paper	3.7	16
Paraffin	2.1-2.5	10
Plexiglas	3.4	40
Polystyrene	2.55	24
Porcelain	7	5.7
Transformer oil	2.24	12

- Dielectrics increase the capacitance: $C/C_0 = \kappa$.
- The capacitor is discharged spontaneously across the dielectric if the electric field exceeds the value quoted as dielectric strength.

Impact of Dielectric (1)

What happens when a dielectric is placed into a capacitor with the **charge on the capacitor** kept constant?

	vacuum	dielectric
charge	Q_0	$Q = Q_0$
electric field	E_0	$E = \frac{E_0}{\kappa} < E_0$
voltage	V_0	$V = \frac{v_0}{\kappa} < V_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
potential energy	$U_0 = \frac{Q_0^2}{2C_0}$	$U = \frac{Q^2}{2C} = \frac{U_0}{\kappa} < U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \frac{1}{2}\epsilon E^2 = \frac{u_E^{(0)}}{\kappa} < u_E^{(0)}$

Impact of Dielectric (2)

What happens when a dielectric is placed into a capacitor with the **voltage across the capacitor** kept constant?

	vacuum	dielectric
voltage	V_0	$V = V_0$
electric field	E_0	$E = E_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
charge	Q_0	$Q = \kappa Q_0 > Q_0$
potential energy	$U_0 = \frac{1}{2}C_0V_0^2$	$U = \frac{1}{2}CV^2 = \kappa U_0 > U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \frac{1}{2}\epsilon E^2 = \kappa u_E^{(0)} > u_E^{(0)}$

Stacked Dielectrics

Consider a parallel-plate capacitor with area A of each plate and spacing d.

- Capacitance without dielectric: $C_0 = \frac{\epsilon_0 A}{d}$.
- Dielectrics stacked in parallel: $C = C_1 + C_2$

$$\begin{split} & \text{with } & C_1 = \kappa_1 \epsilon_0 \frac{A/2}{d}, \ C_2 = \kappa_2 \epsilon_0 \frac{A/2}{d}. \\ & \Rightarrow & C = \frac{1}{2} (\kappa_1 + \kappa_2) C_0. \end{split}$$

Lateral Force on Dielectric

Consider two charged capacitors with dielectrics only halfway between the plates.

In configuration (a) any lateral motion of the dielectric takes place at **constant voltage** across the plates.

In configuration (b) any lateral motion of the dielectric takes place at **constant charge** on the plates.

Determine in each case the direction (left/zero/right) of the lateral force experienced by the dielectric.

Geiger Counter

Radioactive atomic nuclei produce high-energy particles of three different kinds:

- α -particles are ⁴He nuclei.
- β -particles are electrons or positrons.
- γ -particles are high-energy photons.

- · Free electrons produced by ionizing radiation are strongly accelerated toward the central wire.
- · Collisions with gas atoms produce further free electrons, which are accelerated in the same direction.
- · An avalanche of electrons reaching the wire produces a current pulse in the circuit.

Capacitor Circuit (4)

Connect the three capacitors in such a way that the equivalent capacitance is $C_{eq}=2\mu {\rm F}$. Draw the circuit diagram.

