
Electric Field of a Point Charge

electric
charge

electric
field

electric
charge

generates

locally

exerts force

exerts force over distance

(1) Electric field ~E generated by point charge q: ~E = k
q

r2
r̂

(2) Force ~F1 exerted by field ~E on point charge q1: ~F1 = q1 ~E

(1+2) Force ~F1 exerted by charge q on charge q1: ~F1 = k
qq1

r2
r̂ (static conditions)

• ǫ0 = 8.854× 10−12C2N−1m−2

• k =
1

4πǫ0
= 8.99× 109Nm2C−2

+

q r

r
source point r

r
pointfield

point
field

^

^

E

E
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Magnetic Field of a Moving Point Charge

field
electricgenerates

locally

exerts force

exerts force over distance

electric magnetic
moving

charge charge

moving

(1) Magnetic field ~B generated by point charge q: ~B =
µ0

4π

q~v × r̂

r2

(2) Force ~F1 exerted by field ~B on point charge q1: ~F1 = q1~v1 × ~B

(1+2) There is a time delay between causally related events over distance.

• Permeability constant
µ0 = 4π × 10−7Tm/A r̂q

r B

v

pointfield

source point

+
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Magnetic Field Application (1)

A particle with charge q = 4.5nC is moving with velocity ~v = 3× 103m/ŝi.

Find the magnetic field generated at the origin of the coordinate system.

• Position of field point relative to particle: ~r = 4mî− 3mĵ

• Distance between Particle and field point: r =
p

(4m)2 + (3m)2 = 5m

• Magnetic field:

~B =
µ0

4π

q~v × r̂

r2
=

µ0

4π

q~v × ~r

r3

=
µ0

4π

q(3× 103m/ŝi)× (4mî− 3mĵ)

(5m)3

= −µ0

4π

q(3× 103m/ŝi)× (3mĵ)

(5m)3

= −3.24× 10−14Tk̂.
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Law of Biot and Savart

• Current element: Id~s = dq~v [1Am = 1Cm/s]

• Magnetic field of current element: dB =
µ0

4π

dqv sin θ

r2
=

µ0

4π

Ids sin θ

r2

• Vector relation: d ~B =
µ0

4π

Id~s× r̂

r2

• Magnetic field generated by current of arbitrary shape:

~B =
µ0

4π

Z

Id~s× r̂

r2
(Law of Biot and Savart)

dB

r

dsθ

I

r̂
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Magnetic Field of Circular Current

• Law of Biot and Savart: dB =
µ0

4π

Idℓ

z2 + R2

• dBz = dB sin θ = dB
R√

z2 + R2

⇒ dBz =
µ0I

4π

Rdℓ

(z2 + R2)3/2

• Bz =
µ0I

4π

R

(z2 + R2)3/2

Z

2πR

0

dℓ

⇒ Bz =
µ0I

2

R2

(z2 + R2)3/2

• Field at center of ring (z = 0): Bz =
µ0I

2R

• Magnetic moment: µ = IπR2

• Field at large distance (z ≫ R) : Bz ≃
µ0

2π

µ

z3
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Magnetic Field Application (11)

The electric field Ex along the axis of a charged ring and the magnetic field Bx along the axis of a
circular current loop are

Ex =
Q

4πǫ0

x

(x2 + R2)3/2
, Bx =

µ0I

2

R2

(x2 + R2)3/2

(a) Simplify both expressions for x = 0.

(b) Simplify both expressions for x≫ R.

(c) Sketch graphs of Ex(x) and Bx(x).

x BxE

x x
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Magnetic Field on the Axis of a Solenoid

• Number of turns per unit length: n = N/L

• Current circulating in ring of width dx′: nIdx′

• Magnetic field on axis of ring: dBx =
µ0(nIdx′)

2

R2

[(x− x′)2 + R2]3/2

• Magnetic field on axis of solenoid:

Bx =
µ0nI

2
R2

Z x2

x1

dx′

[(x− x′)2 + R2]3/2
=

µ0nI

2

 

x− x1
p

(x− x1)2 + R2
− x− x2
p

(x− x2)2 + R2

!
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Magnetic Field Generated by Current in Straight Wire (1)

Consider a field point P that is a distance R from the axis of the wire.

• dB =
µ0

4π

Idx

r2
sin φ =

µ0

4π

Idx

r2
cos θ

• x = R tan θ ⇒ dx

dθ
=

R

cos2 θ
=

R

R2/r2
=

r2

R

• dB =
µ0

4π

I

r2

r2dθ

R
cos θ =

µ0

4π

I

R
cos θdθ

• B =
µ0

4π

I

R

Z θ2

θ1

cos θdθ

=
µ0

4π

I

R
(sin θ2 − sin θ1)

• Length of wire: L = R(tan θ2 − tan θ1)

Wire of infinite length: θ1 = −90◦, θ2 = 90◦ ⇒ B =
µ0I

2πR
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Magnetic Field Generated by Current in Straight Wire (2)

Consider a current I in a straight wire of infinite length.

• The magnetic field lines are concentric circles
in planes prependicular to the wire.

• The magnitude of the magnetic field at distance R

from the center of the wire is B =
µ0I

2πR
.

• The magnetic field strength is
proportional to the current I and
inversely proportional to the distance R
from the center of the wire.

• The magnetic field vector is tangential
to the circular field lines and directed
according to the right-hand rule.
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Magnetic Field Generated by Current in Straight Wire (3)

Consider the magnetic field ~B in the limit R→ 0.

• B =
µ0

4π

I

R
(sin θ2 − sin θ1)

• sin θ1 =
a√

a2 + R2
=

1
q

1 + R2

a2

≃ 1− 1

2

R2

a2

• sin θ2 =
2a√

4a2 + R2
=

1
q

1 + R2

4a2

≃ 1− 1

2

R2

4a2

• B ≃ µ0

4π

I

R

„

1− 1

2

R2

4a2
− 1 +

1

2

R2

a2

«

=
µ0I

4π

3R

8a2

R→0−→ 0 a

aa

R

B

I

θ2

1θ
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Magnetic Field Application (2)

The currents I1, I2 in two long straight wires have equal magnitude and generate a magnetic field
~B as shown at three points in space.

• Find the directions (
J

,
N

) for I1, I2 in configurations (a) and (b).

I I21
I I21

(b)(a)
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Magnetic Field at Center of Square-Shaped Wire

Consider a current-carrying wire bent into the shape of a square with side 2a.
Find direction and magnitude of the magnetic field generated at the center of the square.

B

45o 45o

a a

a

a

a

a

Ι

Ι

Ι

Ι

a

a

B = 4
µ0

4π

I

a

h

sin(45◦)− sin(−45◦)
i

=

√
2µ0I

πa
.
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Magnetic Field Application (5)

If the current I in (a) generates a magnetic field B0 = 1T pointing out of the plane

• find magnitude and direction of the fields B1, B2, B3 generated by I in (b),

• find magnitude and direction of the fields B4, B5, B6 generated by I in (c).

B

B

B

4

5

6
I

B

B

B

1

2

3

B0=1T
I

I

(a) (b) (c)
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Magnetic Field Application (6)

A current-carrying wire is bent into two semi-infinite straight segments at right angles.

(a) Find the direction (
J

,
N

) of the magnetic fields B1, . . . , B6.

(b) Name the strongest and the weakest fields among them.

(c) Name all pairs of fields that have equal strength.

I

B B

B

BBB

1 2

6

3

45

L

L
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Magnetic Field Application (15)

A current-carrying wire is bent into two straight segments of length L at right angles.

(a) Find the direction (
J

,
N

) of the magnetic fields B1, . . . , B6.

(b) Name the strongest and the weakest fields among them.

(c) Name all pairs of fields that have equal strength.

I

B B

B

BBB

1 2

6

3

45

L

L
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Magnetic Field Next to Current-Carrying Ribbon

Consider a very long ribbon of width w carrying a current I in the direction shown.
The current density is assumed to be uniform.
Find the magnetic field B generated a distance d from the ribbon as shown.

d

B I

0

dx
x

w

Divide the ribbon into thin strips of width dx.
Treat each strip as a wire with current dI = Idx/w.
Sum up the field contributions from parallel wires.

dB =
µ0

2π

dI

x
=

µ0I

2πw

dx

x

B =
µ0I

2πw

Z d+w

d

dx

x
=

µ0I

2πw
ln
“

1 +
w

d

”
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Force Between Parallel Lines of Electric Charge

• Electric charge densities: λa, λb

• Electric field generated by line a: Ea =
1

2πǫ0

λa

d

• Electric force on segment of line b: Fab = λbLEa

• Electric force per unit length (repulsive):
Fab

L
=

1

2πǫ0

λaλb

d

L

λ a> 0 λb> 0

Fab
Ea

d
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Force Between Parallel Lines of Electric Current

• Electric currents: Ia, Ib

• Magnetic field generated by line a: Ba =
µ0

2π

Ia

d

• Magnetic force on segment of line b: Fab = IbLBa

• Magnetic force per unit length (attractive):
Fab

L
=

µ0

2π

IaIb

d

I Iba

Fab

Ba

L

d
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Force Between Perpendicular Lines of Electric Current

• Electric currents: Ia, Ib

• Magnetic field generated by line a: Ba =
µ0

2π

Ia

r

• Magnetic force on segment dr of line b: dFab = IbBadr

• Magnetic force on line b: Fab =
µ0

2π
IaIb

Z r2

r1

dr

r
=

µ0

2π
IaIb ln

r2

r1

Ba
Ia Fab

I b

drr
r2

1
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Is There Absolute Motion?

Forces between two long, parallel, charged rods

v
F

B

λ   > 0

λ   > 0

∗
1

∗
2

I   = v λ∗11

2I   = v ∗λ 2

FE
∗FE

λ   > 01

λ   > 02

d

in uniform motionat rest

• FE

L
=

1

2πǫ0

λ1λ2

d
(left),

F ∗

E

L
=

1

2πǫ0

λ∗

1
λ∗

2

d
,

FB

L
=

µ0

2π

I1I2

d
, (right)

• F ∗

E − FB

L
=

1

2πǫ0

λ∗

1
λ∗

2

d

„

1− v2

c2

«

=
1

2πǫ0

λ1λ2

d

• c =
1

√
ǫ0µ0

= 2.998× 108ms−1 (speed of light)

• λ∗

1 =
λ1

p

1− v2/c2
, λ∗

2 =
λ2

p

1− v2/c2
(due to length contraction)
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Magnetic Field Application (4)

An electric current I flows through the wire as indicated by arrows.

(a) Find the direction (
J

,
N

) of the magnetic field generated by the current at the points
1, . . . , 5.

(b) At which points do we observe the strongest and weakest magnetic fields?

5

4

3

2

1

I

I
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Magnetic Field Application (12)

Consider two infinitely long straight currents I1 and I2 as shown.

• Find the components Bx and By of the magnetic field at the origin of the coordinate system.

I

I

3m

4m

2

1 = 2A

= 4A

y

x
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Magnetic Field Application (13)

Two straight electric currents I1 and I2 of infinite length directed perpendicular to the xy-plane
generate a magnetic field of magnitude B = 6.4× 10−7T in the direction shown.

• Find the magnitude and direction (⊙,⊗) of each current.

I

I3m

4m

2

y

x
155 o

B
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Magnetic Field Application (3)

Two semi-infinite straight wires are connected to a segment of circular wire in three different ways.
A current I flows in the direction indicated.

(a) Find the direction (
J

,
N

) of the magnetic fields ~B1, ~B1, ~B3.

(b) Rank the magnetic fields according to strength.

B1

L

LI

I

B

L

L

2

I

B

L

L

3
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Magnetic Field Application (8)

Three squares with equal clockwise currents are placed in the magnetic field of a straight wire with
a current flowing to the right.

• Find the direction (↑, ↓, zero) of the magnetic force acting on each square.

(1)

(2)

(3)
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Magnetic Field Application (10)

Consider two currents of equal magnitude in straight wires flowing perpendicular to the plane.

• In configurations (a) and (b), find the direction (→,←, ↑, ↓) of the magnetic field generated by
the two currents at points P, Q, R, S

R S

II

Q

P
(a)

R S

Q

P
II

(b)
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Magnetic Field Application (9)

Two wires of infinite length contain concentric semicircular segments of radii 1m and 2m,
respectively.

• If one of the wires carries a 6A current in the direction indicated, what must be the direction
(↑, ↓) and magnitude of the current in the other wire such that the magnetic field at the center
of the semicircles vanishes?

6A 6A

(a) (b)
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Magnetic Field Application (14)

Consider two pairs of rectangular electric currents flowing in the directions indicated.

(a) What is the direction (→,←) of the magnetic force experienced by the black rectangle in
each case?

(b) Which black rectangle experiences the stronger magnetic force?

(1) (2)
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Intermediate Exam III: Problem #1 (Spring ’05)

An infinitely long straight current of magnitude I = 6A is directed into the plane (⊗) and located a
distance d = 0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic
field ~B generated by this current is in the negative y-direction as shown.

(a) Find the magnitude B of the magnetic field.

(b) Mark the location of the position of the current ⊗ on the dashed circle.

y

x
B

0.4m
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Intermediate Exam III: Problem #1 (Spring ’05)

An infinitely long straight current of magnitude I = 6A is directed into the plane (⊗) and located a
distance d = 0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic
field ~B generated by this current is in the negative y-direction as shown.

(a) Find the magnitude B of the magnetic field.

(b) Mark the location of the position of the current ⊗ on the dashed circle.

y

x
B

0.4m
Solution:

(a) B =
µ0

2π

I

d
= 3µT.
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Intermediate Exam III: Problem #1 (Spring ’05)

An infinitely long straight current of magnitude I = 6A is directed into the plane (⊗) and located a
distance d = 0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic
field ~B generated by this current is in the negative y-direction as shown.

(a) Find the magnitude B of the magnetic field.

(b) Mark the location of the position of the current ⊗ on the dashed circle.

y

x
B

0.4m
Solution:

(a) B =
µ0

2π

I

d
= 3µT.

(b) Position of current ⊗ is at y = 0, x = −0.4m.
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Intermediate Exam III: Problem #1 (Spring ’06)

Consider two infinitely long, straight wires with currents of equal magnitude I1 = I2 = 5A in the
directions shown.
Find the direction (in/out) and the magnitude of the magnetic fields B1 and B2 at the points
marked in the graph.

2m 2m

2m
2m

Ia

I b

B 2

B1
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Intermediate Exam III: Problem #1 (Spring ’06)

Consider two infinitely long, straight wires with currents of equal magnitude I1 = I2 = 5A in the
directions shown.
Find the direction (in/out) and the magnitude of the magnetic fields B1 and B2 at the points
marked in the graph.

2m 2m

2m
2m

Ia

I b

B 2

B1

Solution:

• B1 =
µ0

2π

„

5A

4m
− 5A

4m

«

= 0 (no direction).
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Intermediate Exam III: Problem #1 (Spring ’06)

Consider two infinitely long, straight wires with currents of equal magnitude I1 = I2 = 5A in the
directions shown.
Find the direction (in/out) and the magnitude of the magnetic fields B1 and B2 at the points
marked in the graph.

2m 2m

2m
2m

Ia

I b

B 2

B1

Solution:

• B1 =
µ0

2π

„

5A

4m
− 5A

4m

«

= 0 (no direction).

• B2 =
µ0

2π

„

5A

2m
− 5A

4m

«

= 0.25µT (out of plane).
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Intermediate Exam III: Problem #2 (Spring ’07)

Consider two very long, straight wires with currents I1 = 6A at x = 1m and I3 = 3A at x = 3m in
the directions shown. Find magnitude and direction (up/down) of the magnetic field
(a) B0 at x = 0,
(b) B2 at x = 2m,
(c) B4 at x = 4m.

1 2 3 40
x [m]

BB2B0 4

I  = 6A1 I  = 3A3
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Intermediate Exam III: Problem #2 (Spring ’07)

Consider two very long, straight wires with currents I1 = 6A at x = 1m and I3 = 3A at x = 3m in
the directions shown. Find magnitude and direction (up/down) of the magnetic field
(a) B0 at x = 0,
(b) B2 at x = 2m,
(c) B4 at x = 4m.

1 2 3 40
x [m]

BB2B0 4

I  = 6A1 I  = 3A3

Solution:

(a) B0 = − µ0(6A)

2π(1m)
+

µ0(3A)

2π(3m)
= −1.2µT + 0.2µT = −1.0µT (down),
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Intermediate Exam III: Problem #2 (Spring ’07)

Consider two very long, straight wires with currents I1 = 6A at x = 1m and I3 = 3A at x = 3m in
the directions shown. Find magnitude and direction (up/down) of the magnetic field
(a) B0 at x = 0,
(b) B2 at x = 2m,
(c) B4 at x = 4m.

1 2 3 40
x [m]

BB2B0 4

I  = 6A1 I  = 3A3

Solution:

(a) B0 = − µ0(6A)

2π(1m)
+

µ0(3A)

2π(3m)
= −1.2µT + 0.2µT = −1.0µT (down),

(b) B2 =
µ0(6A)

2π(1m)
+

µ0(3A)

2π(1m)
= 1.2µT + 0.6µT = 1.8µT (up),
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Intermediate Exam III: Problem #2 (Spring ’07)

Consider two very long, straight wires with currents I1 = 6A at x = 1m and I3 = 3A at x = 3m in
the directions shown. Find magnitude and direction (up/down) of the magnetic field
(a) B0 at x = 0,
(b) B2 at x = 2m,
(c) B4 at x = 4m.

1 2 3 40
x [m]

BB2B0 4

I  = 6A1 I  = 3A3

Solution:

(a) B0 = − µ0(6A)

2π(1m)
+

µ0(3A)

2π(3m)
= −1.2µT + 0.2µT = −1.0µT (down),

(b) B2 =
µ0(6A)

2π(1m)
+

µ0(3A)

2π(1m)
= 1.2µT + 0.6µT = 1.8µT (up),

(c) B4 =
µ0(6A)

2π(3m)
− µ0(3A)

2π(1m)
= 0.4µT− 0.6µT = −0.2µT (down).
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Unit Exam III: Problem #1 (Spring ’08)

Consider two circular currents I1 = 3A at radius r1 = 2m and I2 = 5A at radius r2 = 4m in the
directions shown.
(a) Find magnitude B and direction (⊙,⊗) of the resultant magnetic field at the center.
(b) Find magnitude µ and direction (⊙,⊗) of the magnetic dipole moment generated by the two
currents.

r

r

I

I

1

1

2

2
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Unit Exam III: Problem #1 (Spring ’08)

Consider two circular currents I1 = 3A at radius r1 = 2m and I2 = 5A at radius r2 = 4m in the
directions shown.
(a) Find magnitude B and direction (⊙,⊗) of the resultant magnetic field at the center.
(b) Find magnitude µ and direction (⊙,⊗) of the magnetic dipole moment generated by the two
currents.

r

r

I

I

1

1

2

2

Solution:

(a) B =
µ0(3A)

2(2m)
− µ0(5A)

2(4m)
= (9.42− 7.85)× 10−7T

⇒ B = 1.57× 10−7T ⊗
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Unit Exam III: Problem #1 (Spring ’08)

Consider two circular currents I1 = 3A at radius r1 = 2m and I2 = 5A at radius r2 = 4m in the
directions shown.
(a) Find magnitude B and direction (⊙,⊗) of the resultant magnetic field at the center.
(b) Find magnitude µ and direction (⊙,⊗) of the magnetic dipole moment generated by the two
currents.

r

r

I

I

1

1

2

2

Solution:

(a) B =
µ0(3A)

2(2m)
− µ0(5A)

2(4m)
= (9.42− 7.85)× 10−7T

⇒ B = 1.57× 10−7T ⊗
(b) µ = π(4m)2(5A)− π(2m)2(3A) = (251− 38)Am2

⇒ µ = 213Am2 ⊙
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Unit Exam III: Problem #2 (Spring ’09)

Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter
circle, or half circle of radius R = 1m in four different configurations. A current I = 1A flows in the
directions shown. Find magnitude Ba, Bb, Bc, Bd and direction (⊙/⊗) of the magnetic field thus
generated at the points a, b, c, d.

I

d

I

I

a

b

I

c
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Unit Exam III: Problem #2 (Spring ’09)

Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter
circle, or half circle of radius R = 1m in four different configurations. A current I = 1A flows in the
directions shown. Find magnitude Ba, Bb, Bc, Bd and direction (⊙/⊗) of the magnetic field thus
generated at the points a, b, c, d.

I

d

I

I

a

b

I

c

Solution:

Ba =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

2R
+

µ0I

4πR

˛

˛

˛

˛

= |100nT + 628nT + 100nT| = 828nT ⊗
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Unit Exam III: Problem #2 (Spring ’09)

Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter
circle, or half circle of radius R = 1m in four different configurations. A current I = 1A flows in the
directions shown. Find magnitude Ba, Bb, Bc, Bd and direction (⊙/⊗) of the magnetic field thus
generated at the points a, b, c, d.

I

d

I

I

a

b

I

c

Solution:

Ba =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

2R
+

µ0I

4πR

˛

˛

˛

˛

= |100nT + 628nT + 100nT| = 828nT ⊗

Bb =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

4R
− µ0I

4πR

˛

˛

˛

˛

= |100nT + 314nT− 100nT| = 314nT ⊗
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Unit Exam III: Problem #2 (Spring ’09)

Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter
circle, or half circle of radius R = 1m in four different configurations. A current I = 1A flows in the
directions shown. Find magnitude Ba, Bb, Bc, Bd and direction (⊙/⊗) of the magnetic field thus
generated at the points a, b, c, d.

I

d

I

I

a

b

I

c

Solution:

Ba =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

2R
+

µ0I

4πR

˛

˛

˛

˛

= |100nT + 628nT + 100nT| = 828nT ⊗

Bb =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

4R
− µ0I

4πR

˛

˛

˛

˛

= |100nT + 314nT− 100nT| = 314nT ⊗

Bc =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

8R
+ 0

˛

˛

˛

˛

= |100nT + 157nT| = 257nT ⊗
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Unit Exam III: Problem #2 (Spring ’09)

Two semi-infinite straight wires are connected to a curved wire in the form of a full circle, quarter
circle, or half circle of radius R = 1m in four different configurations. A current I = 1A flows in the
directions shown. Find magnitude Ba, Bb, Bc, Bd and direction (⊙/⊗) of the magnetic field thus
generated at the points a, b, c, d.

I

d

I

I

a

b

I

c

Solution:

Ba =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

2R
+

µ0I

4πR

˛

˛

˛

˛

= |100nT + 628nT + 100nT| = 828nT ⊗

Bb =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

4R
− µ0I

4πR

˛

˛

˛

˛

= |100nT + 314nT− 100nT| = 314nT ⊗

Bc =

˛

˛

˛

˛

µ0I

4πR
+

µ0I

8R
+ 0

˛

˛

˛

˛

= |100nT + 157nT| = 257nT ⊗

Bd =

˛

˛

˛

˛

µ0I

4πR
− µ0I

2R
+

µ0I

4πR

˛

˛

˛

˛

= |100nT− 628nT + 100nT| = 428nT ⊙

27/10/2015 [tsl396 – 33/33]
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