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Dynamics of Charged Particle:

e Newton’s equation of motion: F = md.

e Lorentz force: F' = q(E + ¢ x B).

Dynamics of Electric and Magnetic Fields:

e Gauss’ law for electric field: 7{5 CdA = i.

€0
e Gauss’ law for magnetic field: %E .dA = 0.

S dd .
e Faraday’s law: ]{E-dﬁz—d—tB, where CDB:/B-dA.

IR dd
e Ampere’s law: }I{B -dl = uol + poeo th

,  Where @E:/E'-d/_f.

Maxwell’s equations: 4 relations between fields (E, B) and sources (g, I).
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The net electric flux ® i through any closed surface is equal to the net charge @);,, inside divided
by the permittivity constant eg:

7{5 : dg: 47Tinn == an i.e. CIDE == an
€0 €0

with €p = 8.854 x 107 12C2N~"Im—2

The closed surface can be real or fictitious. It is called “Gaussian surface”.
The symbol ¢ denotes an integral over a closed surface in this context.

e (Gauss’s law is a general relation between
electric charge and electric field.

e In electrostatics: Gauss’s law is equivalent
to Coulomb’s law.

e Gauss’s law is one of four Maxwell’s
equations that govern cause and effect in
electricity and magnetism.
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The net magnetic flux ¢ g through any closed surface is equal to zero:

%é-dﬁ’zo.

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how
the (closed) Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss'’s laws for the electric and magnetic fields in the context of an
electric dipole (left) and a magnetic dipole (right).
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The circulation integral of the magnetic field B around any closed curve (loop) C' is equal to the
net electric current I~ flowing through the loop:

%é Ldl = pwolc, with pg = 4m X 10_7Tm/A
The symbol ¢ denotes an integral over a closed curve in this context.

Note: Only the component of B tangential to the loop contributes to the integral.
The positive current direction through the loop is determined by the right-hand rule.

B
s
C

—




Magnetic field B (given)
Surface S with perimeter loop (given)
Surface area A (given)

Area vector A = Af (my choice)

Positive direction around perimeter: ccw
(consequence of my choice)

Magnetic flux: &g = /E-d/f: /E-rfsz

L .. dB
Consider situation with = #0

Induced electric field: E

Induced EMF: £ = ?{E' . dl

(integral ccw around perimeter)

dd
Faraday’s law: £ = _d—tB

Wi |_|""':'E"! TR




e Conduction current; I.

. dd
e Displacement current: Ip = ¢g d—tE
L - o dd g
e Ampere’s law: B-dl =po(I+ Ip) = pol + poeo o
Plates of
capacitor

Curve C
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Mechanical waves travel in some medium.
Examples: sound wave, violin string, surface water wave.
While the wave propagates, the medium undergoes periodic motion.

Distinguish:

(1) direction of wave propagation,
(2) direction in which medium moves.

Transverse wave: (1) and (2) are perpendicular to each other.

Longitudinal wave: (1) and (2) are parallel to each other.

Electromagnetic waves are transversely oscillating electric and magnetic fields.
Electromagnetic waves travel in the vacuum. There is no medium.

Waves transport energy and, in some cases, information, but not the medium itself (if there is a
medium).




Wave function: y(z,t) = Asin(kx — wt)

T
A

(wave number)

A (wavelength)

= 2w f (angular frequency)

27
w = —

T

w
f—%——
T (period)
c:i:)\f

(frequency)

% (wave speed)

A




y(z,t) = Asin(kx — wt) (displacement)
oy

v(z,t) = 5 = —wA cos(kx —wt) (velocity)
0%y 2 4 o -
a(xz,t) = 52 = Y Asin(kx — wt) (acceleration)
Ay
B kA cos(kx —wt) (slope of wave form)
T

82y 2 .

2 —k“Asin(kx — wt) (curvature of wave form)
T

= = ratio of second derivatives
e TR )

0%y 5 0%y Y
—_— = —
Ot2 ox?

Wave equation:

A
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Maxwell's equations for electric and magnetic fields in free space (no sources):

e Gauss' laws: ?{E-dﬁzo, fﬁ-dﬁzo.

e Faraday’s and Ampere’s laws: }[E ~dl = _d—tB’ ]{B -dl = poeg th.

Consider fields of particular directions and dependence on space:

A

E = Ey(z,t)j, B = B.(z,t)k. y

Gauss’ laws are then automatically satisfied. T

Use the cubic Gaussian surface to show that

e the net electric flux ® g is zero, B

e the net magnetic flux ® g is zero. X




T .1|;|
_-_u.u.- Iq'l-l—l-l—l-l-l.
W

L[t E_

e Faraday’s law, ?{E' Al = ——=
applied to loop in (z, y)-plane becomes

[Ey(x 4+ dx,t) — Ey(x,t)]dy = —%Bz (z,t)dzdy

0 0

— Ey(z,t) = —— B, (x,t F
= - By(et) = — 2 Ba(a,1) ()

o y
e Ampere’s law, 7{B dﬁ_,uoeo dth -«
applied to loop in (z, z)-plane becomes@ B v/ A dy
[—B.(x + dx,t) + B;(x,t)|dz = poeo aEy(x,t)dxdz A -
5 5 ET Codx

= — —B.(x,t) = ppeo aEy(x,t) (A) | X

ox = —
T
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Take partial derivatives g(F) and %(A): OBy _ _8 B 0"B. = Lo€Q OBy
X

ox2 ~ Otox’  Otdx o2

2 2

= a@% = ¢? 6(9% (E) (wave equation for electric field).
0 0 02F 92 B 02 B 0?FE

Take partial derivatives — (F) and — (A): v — S — Z = v,

P g pand oA oo, o2 ' oz M B

02 B, 5 02 B, . L
= = B wave equation for magnetic field).

s =55 (B)  (waveeq g )

1 | Electric field

(speed of light). E
V€00

Sinusoidal solution: 4 / 7 7 Direction of
4 ' - ropagarion
_ Magnetic field PP

o Fy(x,t) = Emaz sin(kzr — wt)

o B.(x,t) = Bmag sin(kx — wt)
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For given wave number k the angular frequency w is determined, for example by substitution of
Emaz sin(kx — wt) into (E).

For given amplitude E,, 4, the amplitude B, is determined, for example, by substituting
Enaz sin(kx — wt) and By,qz sin(kx — wt) into (A) or (F).
w Enmax

= — = = c.
k Bmasc

The direction of wave propagation is determind by the Poynting vector:

— ]_ — —
S=—F X B.
HO

| Electrlc field _.

/ "llll’/// 7 o

Magnetic field
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Fields: Ey(x,t) = Emaz sin(kx —wt), B.(z,t) = Bmaz sin(kx — wt).

1 1
Energy density: u(z,t) = §eoE§ (z,t) + 2—B§ (z,t). [IIm3]
MO

, : 1
Use the amplitude relations egE2,,, = eoc*B2,,, = — B2, .-
110
2 . 9 1 2 . 92 EmazBmazx . 2
u(zx,t) = eoE;, 40 sin“(kx —wt) = — B .. sin“(kx — wt) = sin“ (kx — wt).
Ko CHO

Energy transported across area A intime dt: dU (x,t) = u(xz,t)Acdt. [J]
. 1d )
Power transported per unit area: e u(x,t)c = S(x,t).  [W/m=]

Intensity (average power transported per unit area):

=35 — EmazBmax __ €0C 9 o LBQ

max ~ max*
2 2

[W/m?2]

210
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The momentum transported by an electromagnetic wave is proportional to the energy transported.

—
—

: S - 1 5 5. :
Momentum density: % = —, where S = — E x B is the Poynting vector.

2 MO
When the wave is absorbed by a material surface it exerts an impulse Fdt = Ap.

The resulting radiation pressure is the average force per unit area:

F P p dx P S I
Pabs === —C = — = —.
A dt  Adx dt |4 c c
- o 25 21
The radiation pressure exerted by a reflected wave is twice as large: P..y = — = —.
C C
y Wave velocity

| Electric field

zZ
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