Resistance and Resistivity

- Resistor: device (material object with two terminals)
- · Resistance: attribute of device
- Resistivity: attribute of conducting material

A voltage V provided by some source is applied to the terminals of a resistor and a current I is observed flowing through the resistor.

• Resistance: $R=rac{V}{I}$ [1 Ω =1V/A] (1 Ohm)

The current density \vec{J} in a resistor depends on the local electric field \vec{E} and on the resistivity ρ of the resistor material.

- Resistivity: $\rho = \frac{E}{J} \quad \left[\frac{1 \text{V/m}}{1 \text{A/m}^2} = 1 \Omega \text{m} \right]$
- Conductivity: $\sigma = \frac{1}{\rho} \quad [1(\Omega \mathrm{m})^{-1}]$
- Vector relations: $\vec{E} = \rho \vec{J}$, $\vec{J} = \sigma \vec{E}$