Faraday's Law of Induction (2)

Here the change in magnetic flux Φ_B is caused by a moving bar magnet.

- Assume area vector \vec{A} of loop pointing right. Hence positive direction around loop is clockwise.
- Motion of bar magnet causes $\dfrac{d\Phi_B}{dt}>0.$
- Faraday's law: $\mathcal{E}=-rac{d\Phi_B}{dt}.$
- Induced EMF is in negative direction, $\mathcal{E} < 0$, which is counterclockwise.
- Induced EMF reflects induced electric field: $\mathcal{E} = \oint_{\mathcal{C}} \vec{E} \cdot d\vec{\ell}.$
- · Field lines of induced electric field are closed.
- Faraday's law is a dynamics relation between electric and magnetic fields: $\oint_C \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A}$.

