Magnetic Induction: Application (9)

Consider a conducting rod of length L rotating with angular velocity ω in a plane perpendicular to a uniform magnetic field \vec{B} .

- Angular velocity of slice: ω
- Linear velocity of slice: $v=\omega r$
- EMF induced in slice: $d\mathcal{E} = Bvdr$
- · Slices are connected in series.
- EMF induced in rod:

$$\mathcal{E} = \int_0^L Bv \, dr = B\omega \int_0^L r \, dr$$

$$\Rightarrow \mathcal{E} = \frac{1}{2}B\omega L^2 = \frac{1}{2}Bv_0 L, \quad v_0 = \omega L$$

