Intermediate Exam I: Problem #1 (Spring '05)

The electric field \vec{E} generated by the two point charges, 3nC and q_1 (unknown), has the direction shown.

- (a) Find the magnitude of \vec{E} .
- (b) Find the value of q_1 .

Intermediate Exam I: Problem #1 (Spring '05)

The electric field \vec{E} generated by the two point charges, 3nC and q_1 (unknown), has the direction shown.

- (a) Find the magnitude of \vec{E} .
- (b) Find the value of q_1 .

Solution:

(a)
$$E_y = k \frac{3\text{nC}}{(2\text{m})^2} = 6.75\text{N/C},$$

 $E_x = E_y,$
 $E = \sqrt{E_x^2 + E_y^2} = 9.55\text{N/C}.$

Intermediate Exam I: Problem #1 (Spring '05)

The electric field \vec{E} generated by the two point charges, 3nC and q_1 (unknown), has the direction shown.

- (a) Find the magnitude of \vec{E} .
- (b) Find the value of q_1 .

Solution:

(a)
$$E_y = k \frac{3nC}{(2m)^2} = 6.75 \text{N/C},$$

 $E_x = E_y,$
 $E = \sqrt{E_x^2 + E_y^2} = 9.55 \text{N/C}.$

(b)
$$E_x = k \frac{(-q_1)}{(4\text{m})^2}$$
, $q_1 = -\frac{(6.75\text{N/C})(16\text{m}^2)}{k} = -12\text{nC}$.

