Intermediate Exam III: Problem #1 (Spring '05)

An infinitely long straight current of magnitude I=6A is directed into the plane (\otimes) and located a distance d=0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic field \vec{B} generated by this current is in the negative y-direction as shown.

- (a) Find the magnitude B of the magnetic field.
- (b) Mark the location of the position of the current \otimes on the dashed circle.

Intermediate Exam III: Problem #1 (Spring '05)

An infinitely long straight current of magnitude I=6A is directed into the plane (\otimes) and located a distance d=0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic field \vec{B} generated by this current is in the negative y-direction as shown.

- (a) Find the magnitude B of the magnetic field.
- (b) Mark the location of the position of the current \otimes on the dashed circle.

Solution:

(a)
$$B = \frac{\mu_0}{2\pi} \frac{I}{d} = 3\mu T$$
.

Intermediate Exam III: Problem #1 (Spring '05)

An infinitely long straight current of magnitude I=6A is directed into the plane (\otimes) and located a distance d=0.4m from the coordinate origin (somewhere on the dashed circle). The magnetic field \vec{B} generated by this current is in the negative y-direction as shown.

- (a) Find the magnitude B of the magnetic field.
- (b) Mark the location of the position of the current \otimes on the dashed circle.

Solution:

(b) Position of current \otimes is at y = 0, x = -0.4m.

