

Consider a point charge q=+8nC at position x=4m, y=0 as shown.

- (a) Find the electric field components E_x and E_y at point P_1 .
- (b) Find the electric field components E_x and E_y at point P_2 .
- (c) Find the electric potential V at point P_3 .
- (d) Find the electric potential V at point P_2 .

Consider a point charge q=+8nC at position x=4m, y=0 as shown.

- (a) Find the electric field components E_x and E_y at point P_1 .
- (b) Find the electric field components E_x and E_y at point P_2 .
- (c) Find the electric potential V at point P_3 .
- (d) Find the electric potential V at point P_2 .

(a)
$$E_x = 0$$
, $E_y = k \frac{8nC}{(3m)^2} = 7.99N/C$.

Consider a point charge q=+8nC at position x=4m, y=0 as shown.

- (a) Find the electric field components E_x and E_y at point P_1 .
- (b) Find the electric field components E_x and E_y at point P_2 .
- (c) Find the electric potential V at point P_3 .
- (d) Find the electric potential V at point P_2 .

(a)
$$E_x = 0$$
, $E_y = k \frac{8nC}{(3m)^2} = 7.99N/C$.

(b)
$$E_x = -k \frac{8nC}{(5m)^2} \cos \theta = -2.88N/C \times \frac{4}{5} = -2.30N/C.$$

 $E_y = k \frac{8nC}{(5m)^2} \sin \theta = 2.88N/C \times \frac{3}{5} = 1.73N/C.$

Consider a point charge q = +8nC at position x = 4m, y = 0 as shown.

- (a) Find the electric field components E_x and E_y at point P_1 .
- (b) Find the electric field components E_x and E_y at point P_2 .
- (c) Find the electric potential V at point P_3 .
- (d) Find the electric potential V at point P_2 .

(a)
$$E_x = 0$$
, $E_y = k \frac{8nC}{(3m)^2} = 7.99N/C$.

(b)
$$E_x = -k \frac{8nC}{(5m)^2} \cos \theta = -2.88N/C \times \frac{4}{5} = -2.30N/C.$$
 $E_y = k \frac{8nC}{(5m)^2} \sin \theta = 2.88N/C \times \frac{3}{5} = 1.73N/C.$

(c)
$$V = k \frac{8nC}{4m} = 17.98V$$
.

Consider a point charge q=+8nC at position x=4m, y=0 as shown.

- (a) Find the electric field components E_x and E_y at point P_1 .
- (b) Find the electric field components E_x and E_y at point P_2 .
- (c) Find the electric potential V at point P_3 .
- (d) Find the electric potential V at point P_2 .

(a)
$$E_x = 0$$
, $E_y = k \frac{8nC}{(3m)^2} = 7.99N/C$.

(b)
$$E_x = -k \frac{8nC}{(5m)^2} \cos \theta = -2.88N/C \times \frac{4}{5} = -2.30N/C.$$
 $E_y = k \frac{8nC}{(5m)^2} \sin \theta = 2.88N/C \times \frac{3}{5} = 1.73N/C.$

(c)
$$V = k \frac{8nC}{4m} = 17.98V$$
.

(d)
$$V = k \frac{8nC}{5m} = 14.38V$$
.

