

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field \mathbf{E}_B at point P_B .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field \mathbf{E}_B at point P_B .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force \mathbf{F}_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field E_R at point P_R .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

- 4m 4m 4m
- (a) $F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$ (directed right). (b) $E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$ (directed right).

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

(a)
$$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$
 (directed right).

(b)
$$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$
 (directed right).
(c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left).

(c)
$$E_B = k \frac{|\text{3nC}|}{(12\text{m})^2} - k \frac{|\text{3nC}|}{(4\text{m})^2} = -1.50\text{N/C}$$
 (directed left).

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

(a)
$$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$
 (directed right).

(b)
$$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$
 (directed right).

(b)
$$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$
 (directed right).
(c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left).

(d)
$$V_A = k \frac{(+3nC)}{4m} + k \frac{(-3nC)}{4m} = 0.$$

Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} .
- (d) Find the electric potential V_A at point P_A .
- (e) Find the electric potential V_B at point P_B .

(a)
$$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$
 (directed right).

(b)
$$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$
 (directed right).

(b)
$$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$
 (directed right).
(c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left).

(d)
$$V_A = k \frac{(+3nC)}{4m} + k \frac{(-3nC)}{4m} = 0.$$

(c) $V_B = k \frac{(+3nC)}{12m} + k \frac{(-3nC)}{4m} = -4.50V.$

(c)
$$V_B = k \frac{(+3nC)}{12m} + k \frac{(-3nC)}{4m} = -4.50V.$$