Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field \mathbf{E}_B at point P_B . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field \mathbf{E}_B at point P_B . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force \mathbf{F}_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field E_R at point P_R . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . - 4m 4m 4m - (a) $F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$ (directed right). (b) $E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$ (directed right). Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . (a) $$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$ (directed right). (b) $$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$ (directed right). (c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left). (c) $$E_B = k \frac{|\text{3nC}|}{(12\text{m})^2} - k \frac{|\text{3nC}|}{(4\text{m})^2} = -1.50\text{N/C}$$ (directed left). Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . (a) $$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$ (directed right). (b) $$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$ (directed right). (b) $$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$ (directed right). (c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left). (d) $$V_A = k \frac{(+3nC)}{4m} + k \frac{(-3nC)}{4m} = 0.$$ Consider the configuration of two point charges as shown. - (a) Find magnitude and direction of the force F_{21} exerted by q_2 on q_1 . - (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A . - (c) Find magnitude and direction of the electric field \mathbf{E}_{B} at point P_{B} . - (d) Find the electric potential V_A at point P_A . - (e) Find the electric potential V_B at point P_B . (a) $$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27 \text{nN}$$ (directed right). (b) $$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$ (directed right). (b) $$E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38 \text{N/C}$$ (directed right). (c) $E_B = k \frac{|3nC|}{(12m)^2} - k \frac{|3nC|}{(4m)^2} = -1.50 \text{N/C}$ (directed left). (d) $$V_A = k \frac{(+3nC)}{4m} + k \frac{(-3nC)}{4m} = 0.$$ (c) $V_B = k \frac{(+3nC)}{12m} + k \frac{(-3nC)}{4m} = -4.50V.$ (c) $$V_B = k \frac{(+3nC)}{12m} + k \frac{(-3nC)}{4m} = -4.50V.$$