Coulomb's Law (1)

Electrostatic force between two charged particles:

$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2} = k \frac{|q_1 q_2|}{r^2}$$

Permittivity constant: $\epsilon_0=8.854\times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ Coulomb constant: $k=8.99\times 10^9 \text{Nm}^2 \text{C}^{-2}$

Action-reaction pair of forces: $\vec{F}_{21} = -\vec{F}_{12}$.

Coulomb's Law (1)

Electrostatic force between two charged particles:

$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2} = k \frac{|q_1 q_2|}{r^2}$$

Permittivity constant: $\epsilon_0=8.854\times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ Coulomb constant: $k=8.99\times 10^9 \text{Nm}^2 \text{C}^{-2}$

Action-reaction pair of forces: $\vec{F}_{21} = -\vec{F}_{12}$.

Newton's law of gravitation (for comparison)

Gravitational force between two massive particles:

$$F = G \frac{m_1 m_2}{r^2}$$

Gravitational constant: $G = 6.673 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$

