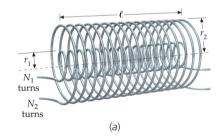
Mutual Induction

 Φ_{12} : magnetic flux through each loop of coil 2 caused by current I_1 through coil 1 Φ_{21} : magnetic flux through each loop of coil 1 caused by current I_2 through coil 2

$$M_{12} = \frac{N_2 \Phi_{12}}{I_1}$$
 (mutual inductance)


$$M_{21}=rac{N_1 \Phi_{21}}{I_2}$$
 (mutual inductance)

$$\mathcal{E}_2 = -M_{12} \frac{dI_1}{dt}$$
 (emf induced in coil 2 due to current in coil 1)
 $\mathcal{E}_1 = -M_{21} \frac{dI_2}{dt}$ (emf induced in coil 2 due to current in coil 1)

$$\mathcal{E}_1 = -M_{21} rac{dI_2}{dt}$$
 (emf induced in coil 2 due to current in coil 1)

$$M_{12} = M_{21} = M$$
 (symmetry property)

$$M_{12} = M_{21} \stackrel{H}{=} M$$
 (symmetry property) $M = \mu_0 \frac{N_1}{\ell} \frac{N_2}{\ell} (\ell \pi r_1^2)$ (present configuration)

