Unit Exam III: Problem #1 (Spring '11)

- (a) Two very long straight wires carry currents as shown. A cube with edges of length 8cm serves as scaffold. Find the magnetic field at point P in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x, B_y, B_z in SI units.
- (b) Two circular currents of radius 5cm, one in the xy-lane and the other in the yz-plane, carry currents as shown. Both circles are centered at point O. Find the magnetic field at point O in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x, B_y, B_z in SI units.

Unit Exam III: Problem #1 (Spring '11)

- (a) Two very long straight wires carry currents as shown. A cube with edges of length 8cm serves as scaffold. Find the magnetic field at point P in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x, B_y, B_z in SI units.
- (b) Two circular currents of radius 5cm, one in the xy-lane and the other in the yz-plane, carry currents as shown. Both circles are centered at point O. Find the magnetic field at point O in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x , B_y , B_z in SI units.

Solution:

(a)
$$B_x = 0$$
, $B_y = \frac{\mu_0(2A)}{2\pi(0.08m)} = 5\mu T$, $B_z = \frac{\mu_0(3A)}{2\pi(0.08m)} = 7.5\mu T$.

Unit Exam III: Problem #1 (Spring '11)

- (a) Two very long straight wires carry currents as shown. A cube with edges of length 8cm serves as scaffold. Find the magnetic field at point P in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x, B_y, B_z in SI units.
- (b) Two circular currents of radius 5cm, one in the xy-lane and the other in the yz-plane, carry currents as shown. Both circles are centered at point O. Find the magnetic field at point O in the form $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$ with B_x , B_y , B_z in SI units.

Solution:

(a)
$$B_x = 0$$
, $B_y = \frac{\mu_0(2A)}{2\pi(0.08m)} = 5\mu T$, $B_z = \frac{\mu_0(3A)}{2\pi(0.08m)} = 7.5\mu T$.
(b) $B_x = \frac{\mu_0(2A)}{2(0.05m)} = 25.1\mu T$, $B_y = 0$, $B_z = -\frac{\mu_0(3A)}{2(0.05m)} = -37.7\mu T$.

b)
$$B_x = \frac{\mu_0(2A)}{2(0.05m)} = 25.1\mu\text{T}$$
, $B_y = 0$, $B_z = -\frac{\mu_0(3A)}{2(0.05m)} = -37.7\mu\text{T}$.