

In a region of uniform magnetic field ${\bf B}=5{
m mT\hat{i}}$, a proton $(m=1.67\times 10^{-27}{
m kg},~q=1.60\times 10^{-19}{
m C})$ is launched with velocity ${\bf v}_0=4000{
m m/s}\hat{\bf k}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time *T* it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

In a region of uniform magnetic field ${\bf B}=5{
m mT\hat{i}}$, a proton $(m=1.67\times 10^{-27}{
m kg},~q=1.60\times 10^{-19}{
m C})$ is launched with velocity ${\bf v}_0=4000{
m m/s}\hat{\bf k}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

Solution:

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
N.

In a region of uniform magnetic field $\mathbf{B} = 5 \text{mT} \hat{\mathbf{i}}$, a proton $(m = 1.67 \times 10^{-27} \text{kg}, q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

Solution:

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
N.

(a)
$$F = qv_0B = 3.2 \times 10^{-18} \text{N}.$$

(b) $\frac{mv_0^2}{r} = qv_0B \quad \Rightarrow \ r = \frac{mv_0}{qB} = 8.35 \text{mm}.$

In a region of uniform magnetic field ${\bf B}=5{
m mT\hat{i}}$, a proton $(m=1.67\times 10^{-27}{
m kg},~q=1.60\times 10^{-19}{
m C})$ is launched with velocity ${\bf v}_0=4000{
m m/s}\hat{\bf k}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time *T* it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

Solution:

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
N.

(b)
$$\frac{mv_0^2}{r} = qv_0B \implies r = \frac{mv_0}{qB} = 8.35$$
mm.

(c)
$$T = \frac{2\pi r}{v_0} = \frac{2\pi m}{qB} = 13.1 \mu s.$$

In a region of uniform magnetic field ${\bf B}=5{
m mT}{\hat{\bf i}}$, a proton $(m=1.67\times 10^{-27}{
m kg},~q=1.60\times 10^{-19}{
m C})$ is launched with velocity ${\bf v}_0=4000{
m m/s}{\hat{\bf k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time *T* it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

Solution:

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
N.

(b)
$$\frac{mv_0^2}{r} = qv_0B \implies r = \frac{mv_0}{qB} = 8.35$$
mm.

(c)
$$T = \frac{2\pi r}{v_0} = \frac{2\pi m}{aB} = 13.1 \mu s.$$

(d) Center of circle to the right of proton's initial position (cw motion).

