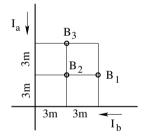
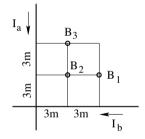


Consider two infinitely long, straight wires with currents $I_a=7$ A, $I_b=9$ A in the directions shown.


Find direction (in/out) and magnitude of the magnetic fields \mathbf{B}_1 , \mathbf{B}_2 , \mathbf{B}_3 at the points marked in the graph.

Consider two infinitely long, straight wires with currents $I_a=7\mathrm{A}$, $I_b=9\mathrm{A}$ in the directions shown.

Find direction (in/out) and magnitude of the magnetic fields B_1 , B_2 , B_3 at the points marked in the graph.


Solution:

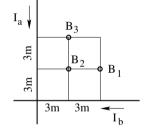
- Convention used: out = positive, in = negative
- $B_1 = \frac{\mu_0}{2\pi} \left(\frac{7A}{6m} \frac{9A}{3m} \right) = -0.367 \mu T$ (in).

Consider two infinitely long, straight wires with currents $I_a = 7A$, $I_b = 9A$ in the directions shown.

Find direction (in/out) and magnitude of the magnetic fields B_1 , B_2 , B_3 at the points marked in the graph.

Solution:

• Convention used: out = positive, in = negative


$$\begin{array}{l} \bullet \ B_1 = \frac{\mu_0}{2\pi} \left(\frac{7\mathrm{A}}{6\mathrm{m}} - \frac{9\mathrm{A}}{3\mathrm{m}} \right) = -0.367 \mu\mathrm{T} \ \text{(in)}. \\ \bullet \ B_2 = \frac{\mu_0}{2\pi} \left(\frac{7\mathrm{A}}{3\mathrm{m}} - \frac{9\mathrm{A}}{3\mathrm{m}} \right) = -0.133 \mu\mathrm{T} \ \text{(in)}. \end{array}$$

•
$$B_2 = \frac{\mu_0}{2\pi} \left(\frac{7A}{3m} - \frac{9A}{3m} \right) = -0.133 \mu T \text{ (in)}.$$

Consider two infinitely long, straight wires with currents $I_a = 7A$, $I_b = 9A$ in the directions shown.

Find direction (in/out) and magnitude of the magnetic fields B_1 , B_2 , B_3 at the points marked in the graph.

Solution:

• Convention used: out = positive, in = negative

•
$$B_1 = \frac{\mu_0}{2\pi} \left(\frac{7A}{6m} - \frac{9A}{3m} \right) = -0.367 \mu T$$
 (in).

•
$$B_2 = \frac{\mu_0}{2\pi} \left(\frac{7A}{3m} - \frac{9A}{3m} \right) = -0.133 \mu T$$
 (in).

•
$$B_2 = \frac{\mu_0}{2\pi} \left(\frac{7A}{3m} - \frac{9A}{3m} \right) = -0.133 \mu T$$
 (in).
• $B_3 = \frac{\mu_0}{2\pi} \left(\frac{7A}{3m} - \frac{9A}{6m} \right) = +0.167 \mu T$ (out).