

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I=3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B}=5\text{mT}\hat{\mathbf{k}}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.
- (c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively.

Remember that vectors have components or magnitude and direction.

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I=3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B}=5\text{mT}\hat{\mathbf{k}}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.
- (c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively.

Remember that vectors have components or magnitude and direction.

Solution:

(a)
$$\vec{F}_{ab} = (3A)(2cm\hat{j}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{i}$$
.

$$\vec{F}_{cd} = (3\mathrm{A})(-2\mathrm{cm}\mathbf{\hat{i}}) \times (5\mathrm{mT}\mathbf{\hat{k}}) = 3 \times 10^{-4}\mathrm{N}\mathbf{\hat{j}}.$$

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I=3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B}=5\text{mT}\hat{\mathbf{k}}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.
- (c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively.

Remember that vectors have components or magnitude and direction.

Solution:

(a)
$$\vec{F}_{ab} = (3A)(2cm\hat{j}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{i}$$
.

$$\vec{F}_{cd} = (3\mathrm{A})(-2\mathrm{cm}\mathbf{\hat{i}}) \times (5\mathrm{mT}\mathbf{\hat{k}}) = 3 \times 10^{-4}\mathrm{N}\mathbf{\hat{j}}.$$

(b)
$$\vec{\mu}_1 = (2\text{cm})^2 (3\text{A})\hat{\mathbf{i}} = 1.2 \times 10^{-3} \text{Am}^2 \hat{\mathbf{i}}.$$

$$\vec{\mu}_2 = (2\text{cm})^2 (3\text{A})\hat{\mathbf{k}} = 1.2 \times 10^{-3} \text{Am}^2 \hat{\mathbf{k}}.$$

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I=3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B}=5\text{mT}\hat{\mathbf{k}}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.
- (c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively.

Remember that vectors have components or magnitude and direction.

Solution:

(a)
$$\vec{F}_{ab} = (3A)(2cm\hat{j}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{i}.$$

 $\vec{F}_{cd} = (3A)(-2cm\hat{i}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{i}.$

(b)
$$\vec{\mu}_1 = (2\text{cm})^2 (3\text{A})\hat{\mathbf{i}} = 1.2 \times 10^{-3} \text{Am}^2 \hat{\mathbf{i}}.$$

$$\vec{\mu}_2 = (2\text{cm})^2 (3\text{A})\hat{\mathbf{k}} = 1.2 \times 10^{-3} \text{Am}^2 \hat{\mathbf{k}}.$$

(c)
$$\vec{\tau}_1 = (1.2 \times 10^{-3} Am^2 \hat{\mathbf{i}}) \times (5mT \hat{\mathbf{k}}) = -6 \times 10^{-6} Nm \hat{\mathbf{j}}.$$

$$\vec{\tau}_2 = (1.2 \times 10^{-3} Am^2 \hat{\mathbf{k}}) \times (5mT \hat{\mathbf{k}}) = 0.$$

