## **Charged Conductor at Equilibrium (3)**



- Consider a conductor with a cavity and excess charge Q.
- Gauss's law implies that there is no net charge on the surface of the cavity.
- The external field is  $\vec{E}_0(\vec{r})$ . There is no field in the cavity.
- Now place a point charge q inside the cavity.
- Gauss's law implies that there is a charge  $-\emph{q}$  on the surface of the cavity.
- ullet Charge conservation implies that there is a charge Q+q on the outer surface of the conductor.
- The external field changes to  $\vec{E}(\vec{r})$ . There is a nonzero electric field field inside the cavity.

