
Conservation Laws and Symmetry [mln11]

Consider an isolated system described by generalized coordinates in an in-
ertial reference frame: L(q1, . . . , qn, q̇1, . . . , q̇n, t). The following conservation
laws can be derived from general properties of space and time.

• Homogeneity of time leads to conservation of energy.
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E(qj, q̇j) = T (qj, q̇j) + V (qj).

A generalized coordinate ql which does not appear in the Lagrangian L(qj, q̇j)
is called cyclic. The generalized momentum pl conjugate to a cyclic coordi-
nate is conserved:
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• Homogeneity of space leads to conservation of linear momentum.

The Lagrangian is invariant under global translations.
Therefore, the center-of-mass coordinates are cyclic.
Therefore, the total linear momentum vector is conserved.

• Isotropy of space leads to conservation of angular momentum.

The Lagrangian is invariant under global rotations.
Therefore, the angle of a global rotation about any axis is cyclic.
Therefore, the total angular momentum vector is conserved.


