Conservation Laws [mln2]

Single Particle

• The *linear momentum* $\mathbf{p} = m\mathbf{v}$ in adirection (specified by vector \mathbf{s}) in which the applied force \mathbf{F} vanishes is a constant in time:

$$\dot{\mathbf{p}} \cdot \mathbf{s} = \mathbf{F} \cdot \mathbf{s}$$
.

• The angular momentum $\mathbf{L} = m(\mathbf{r} \times \mathbf{v})$ is a constant in time if the applied force \mathbf{F} exerts zero torque \mathbf{N} :

$$\dot{\mathbf{L}} \doteq \frac{d}{dt}(\mathbf{r} \times \mathbf{p}) = \underbrace{\dot{\mathbf{r}} \times \mathbf{p}}_{0} + \mathbf{r} \times \dot{\mathbf{p}} = \mathbf{r} \times \mathbf{F} = \mathbf{N}.$$

• If the applied force \mathbf{F} is conservative, then the total energy E, which is the sum of the kinetic energy T and potential energy V, is a constant in time:

$$E = T + V;$$
 $T = \frac{1}{2}mv^2, \quad V(\mathbf{r}) = -\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{s}, \quad \mathbf{F}(\mathbf{r}) = -\nabla V(\mathbf{r}).$

System of Particles

External force: $\mathbf{F}^{(e)} = \sum_{i} \mathbf{F}_{i}^{(e)}$. Internal forces: $\mathbf{F}_{ij} = -\mathbf{F}_{ji}$ with $\mathbf{F}_{ij} \| \mathbf{r}_{ij}$.

• The component of total linear momentum \mathbf{p} in a direction in which the external force $\mathbf{F}^{(e)}$ vanishes is a constant in time:

$$\dot{\mathbf{p}}\cdot\mathbf{s} \doteq \sum_{i}\dot{\mathbf{p}}_{i}\cdot\mathbf{s} = \mathbf{F}^{(e)}\cdot\mathbf{s} + \underbrace{\sum_{ij}\mathbf{F}_{ij}\cdot\mathbf{s}}_{0}.$$

• The total angular momentum \mathbf{L} is a constant in time if the external force $\mathbf{F}^{(e)}$ exerts zero torque $\mathbf{N}^{(e)}$:

$$\dot{\mathbf{L}} \doteq \sum_{i} \frac{d}{dt} (\mathbf{r}_{i} \times \mathbf{p}_{i}) = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}^{(e)} = \mathbf{N}^{(e)}.$$

• If the forces $\mathbf{F}^{(e)}$ and \mathbf{F}_{ij} are conservative, then the total (mechanical) energy E of the system is a constant in time:

$$E = T + V;$$
 $T = \sum_{i} \frac{1}{2} m_i v_i^2, \quad V = \sum_{i} V_i^{(e)} + \sum_{i < j} V_{ij}.$

Non-conservative forces (friction, attenuation) imply energy dissipation. Some mechanical energy is then converted into thermal energy or radiation.