Euler's Equations [mln27]

Equation of motion in inertial frame: $\left(\frac{d\mathbf{L}}{dt}\right)_I = \mathbf{N}$.

Equation of motion in (rotating) body frame: $\left(\frac{d\mathbf{L}}{dt}\right)_R + \vec{\omega} \times \mathbf{L} = \mathbf{N}.$

Proof:

$$\mathbf{N} = \frac{d}{dt} \left[\sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times (\vec{\omega} \times \mathbf{r}_{\alpha}) \right] = \frac{d}{dt} \left[\sum_{i} L_{i} \mathbf{e}_{i} \right] = \dot{L}_{i} \mathbf{e}_{i} + L_{i} \dot{\mathbf{e}}_{i}.$$

Use
$$L_i = \sum_{ij} I_{ij} \omega_j$$
. $\dot{\mathbf{e}}_i = \vec{\omega} \times \mathbf{e}_i$.

$$\Rightarrow \mathbf{N} = \sum_{ij} I_{ij} \dot{\omega}_j \mathbf{e}_i + \vec{\omega} \times \sum_{ij} I_{ij} \omega_j \mathbf{e}_i.$$

Choose body frame with principal coordinate axes: $L_i = I_i\omega_i$, i = 1, 2, 3.

Euler's equations:

$$I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) = N_1$$

 $I_2 \dot{\omega}_2 - \omega_3 \omega_1 (I_3 - I_1) = N_2$
 $I_3 \dot{\omega}_3 - \omega_1 \omega_2 (I_1 - I_2) = N_3$

A purely rotating rigid body has 3 degrees of freedom. The associated Lagrange equations are three 2^{nd} order ODEs.

The solution via Euler's equations proceeds in two steps:

- 1. Euler's equations themselves are three 1st order ODEs for $\omega_1, \omega_2, \omega_3$.
- 2. The transformation to the inertial frame, $\omega_i = \omega_i(\phi, \theta, \psi; \dot{\phi}, \dot{\theta}, \dot{\psi})$ amounts to solving another three 1st order ODEs.