Driven Harmonic Oscillator I [mln28]

Equation of motion: $m\ddot{x} = -kx - \gamma \dot{x} + F_0 \cos \omega t \implies \ddot{x} + 2\beta \dot{x} + \omega_0^2 x = A \cos \omega t$.

Parameters: $\beta \doteq \gamma/2m$, $\omega_0 \doteq \sqrt{k/m}$, $A \doteq F_0/m$.

General solution: $x(t) = x_c(t) + x_p(t)$.

- $x_c(t)$: general solution of homogen. eq. (transients) \Rightarrow [mln6].
- $x_p(t)$: particular solution of inhomogen. eq. (steady state) \Rightarrow [mex180].

Steady-state oscillation: $x_p(t) = D\cos(\omega t - \delta)$

- amplitude: $D(\omega) = \frac{A}{\sqrt{(\omega_0^2 \omega^2)^2 + 4\omega^2 \beta^2}}$
- phase angle: $\delta(\omega) = \arctan \frac{2\omega\beta}{\omega_0^2 \omega^2}$.

Maximum amplitude realized at $\left. \frac{dD(\omega)}{d\omega} \right|_{\omega_B} = 0.$

Amplitude resonance frequency: $\omega_R = \sqrt{\omega_0^2 - 2\beta^2}$ if $2\beta^2 < \omega_0^2$.

Average energy: $\langle E(\omega) \rangle = \langle T(\omega) \rangle + \langle V(\omega) \rangle = \frac{1}{4} m A^2 \frac{\omega^2 + \omega_0^2}{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \beta^2}$.

 $\langle E(\omega) \rangle$, $\langle T(\omega) \rangle$, $\langle V(\omega) \rangle$ are resonant at different frequencies \Rightarrow [mex181].

Average power input: $\langle P(\omega) \rangle \doteq \langle F_0 \cos \omega t \cdot \dot{x}(t) \rangle \Rightarrow [\text{mex}182].$

Quality factor: \Rightarrow [mex183]

- \bullet driven oscillator: $Q \doteq 2\pi \, \frac{\text{average energy stored}}{\text{maximum energy input per period}}$,
- damped oscillator: $Q \doteq 2\pi \frac{\text{energy stored}}{\text{energy loss per period}}$.

For $\beta \ll \omega_0$ the width at half maximum of the power resonance curve is $\Delta\omega \simeq 2\beta$. Therefore, the quality factor is $Q \simeq \omega_0/\Delta\omega$.