Observing Transverse Motion of Meter Stick

Consider a meter stick aligned in x-direction of frame S and moving with velocity v_{y}. Frame S^{\prime} moves in x-direction with velocity v relative to S. The center of the stick passes the point $x=x^{\prime}=0, y=y^{\prime}=0$ at $t=t^{\prime}=0$.

Viewed from S the two ends of the stick reach $y=y^{\prime}=0$ simultaneously.
Viewed from S^{\prime} the right end of the stick goes through $y=y^{\prime}=0$ before the left end does. This is a consequence of the relativity of simultaneity. Hence the stick appears tilted in S^{\prime} as shown.

Event 1: right end of stick as it crosses x^{\prime}-axis.

$$
\begin{gathered}
x_{1}^{\prime}=\frac{x_{1}-v t_{1}}{\sqrt{1-v^{2} / c^{2}}}=\frac{(0.5 \mathrm{~m})}{\sqrt{1-v^{2} / c^{2}}}, \quad y_{1}^{\prime}=0 . \\
t_{1}^{\prime}=\frac{t_{1}-v x_{1} / c^{2}}{\sqrt{1-v^{2} / c^{2}}}=-\frac{(0.5 \mathrm{~m}) v / c^{2}}{\sqrt{1-v^{2} / c^{2}}} .
\end{gathered}
$$

Event 2: center of stick as it crosses x^{\prime}-axis.

$$
x_{2}^{\prime}=0, \quad y_{2}^{\prime}=0, \quad t_{2}^{\prime}=0 .
$$

Event 3: right end of stick as center crosses x^{\prime}-axis.

$$
x_{3}^{\prime}=x_{1}^{\prime}+v_{x}^{\prime}\left(t_{3}^{\prime}-t_{1}^{\prime}\right), \quad y_{3}^{\prime}=y_{1}^{\prime}+v_{y}^{\prime}\left(t_{3}^{\prime}-t_{1}^{\prime}\right), \quad t_{3}^{\prime}=0 .
$$

Velocity of stick in $S^{\prime}: v_{x}^{\prime}=-v, \quad v_{y}^{\prime}=v_{y} \sqrt{1-v^{2} / c^{2}}$.

$$
\Rightarrow x_{3}^{\prime}=(0.5 \mathrm{~m}) \sqrt{1-v^{2} / c^{2}}, \quad y_{3}^{\prime}=(0.5 \mathrm{~m}) \frac{v v_{y}}{c^{2}} .
$$

Tilt angle: $\tan \phi=\frac{y_{3}^{\prime}}{x_{3}^{\prime}}=\frac{v v_{y} / c^{2}}{\sqrt{1-v^{2} / c^{2}}}$.

