Equation of motion: $m\ddot{x} = F(x, \dot{x}) \implies \dot{x} = y, \ \dot{y} = F(x, y)/m.$

Velocity vector field: $\mathbf{v}(\mathbf{r}) = \mathbf{v}(x, y) = (\dot{x}, \dot{y}) = (v_x, v_y).$

Fixed point: $\mathbf{v}(\mathbf{r}_k) = 0 \implies (\dot{x}, \dot{y}) = 0$ at $(x, y) = (x_k, y_k)$.

Linearized velocity field around fixed point \mathbf{r}_k :

$$\mathbf{v} = \mathbf{A} \cdot (\mathbf{r} - \mathbf{r}_k) + O(\mathbf{r} - \mathbf{r}_k)^2$$

with Jacobian matrix

$$\mathbf{A} = \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Nature of fixed point depends on eigenvalues of A:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \quad \Rightarrow \quad \lambda^2 - \tau \lambda + \delta = 0,$$

where $\delta = ad - bc$ is the determinant and $\tau = a + d$ the trace.

Solution:

$$\lambda = \frac{\tau}{2} \pm \sqrt{\frac{\tau^2}{4} - \delta}.$$

Three types of fixed points:

- \square Type 1: $\tau^2 > 4\delta \implies \lambda_1 \neq \lambda_2$, real:
 - $\bullet \quad \delta > 0 \quad \Rightarrow \quad node \ (\text{attractor if} \ \tau < 0, \ \text{repellor if} \ \tau > 0),$
 - $\bullet \quad \delta < 0 \quad \Rightarrow \quad hyperbolic \ point.$
- \Box Type 2: $\tau^2 < 4\delta \quad \Rightarrow \ \lambda_1 = \lambda_2^*,$ complex conjugate:
 - $\bullet \quad \Re\{\lambda\} \neq 0 \quad \Rightarrow \quad spiral \ (\text{attractor if} \ \tau < 0, \ \text{repellor if} \ \tau > 0),$
 - $\bullet \quad \Re\{\lambda\} = 0 \quad \Rightarrow \quad elliptic \ point.$
- - b = c = 0 $\Rightarrow star$ (attractor if $\tau < 0$, repellor if $\tau > 0$),
 - $b \neq 0$ or $c \neq 0$ $\Rightarrow improper node$ (attr. if $\tau < 0$, rep. if $\tau > 0$).

Conservative force implies area-preserving flow.

Consequence: $\tau = 0 \implies$ no repellors or attractors.

Only elliptic or hyperbolic fixed points are realized.